Modified Subgradient Extragradient Algorithms with A New Line-Search Rule for Variational Inequalities

被引:0
|
作者
Xian-Jun Long
Jing Yang
Yeol Je Cho
机构
[1] Chongqing Technology and Business University,School of Mathematics and Statistics
[2] Chongqing Technology and Business University,Chongqing Key Laboratory of Social Economy and Applied Statistics
[3] Gyeongsang National University,Department of Mathematics Education
[4] China Medical University,Center for General Education
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Variational inequality; Golden ratio; Pseudomonotone mapping; Strong convergence; Line-search rule; 90C26; 90C34; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a modified subgradient extragradient algorithm with a new line-search rule for solving pseudomonotone variational inequalities with non-Lipschitz mappings. The new line-search rule is designed by the golden radio (5+1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sqrt{5}+1)/2$$\end{document}. We prove the strong convergence theorem under some appropriate conditions in real Hilbert spaces. Finally, we give some numerical experiments to illustrate the performances and advantages of the proposed algorithm.
引用
收藏
相关论文
共 50 条
  • [31] Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
    Wu, Danfeng
    Zhu, Li-Jun
    Shan, Zhuang
    Yin, Tzu-Chien
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [32] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 319 - 345
  • [33] Revisiting subgradient extragradient methods for solving variational inequalities
    Bing Tan
    Xiaolong Qin
    Sun Young Cho
    Numerical Algorithms, 2022, 90 : 1593 - 1615
  • [34] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    Acta Applicandae Mathematicae, 2020, 170 : 319 - 345
  • [35] Two adaptive modified subgradient extragradient methods for bilevel pseudomonotone variational inequalities with applications
    Tan, Bing
    Cho, Sun Young
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
  • [36] Mann Hybrid Deepest-Descent Extragradient Method with Line-Search Process for Hierarchical Variational Inequalities for Countable Nonexpansive Mappings
    Cui, Yun-Ling
    Ceng, Lu-Chuan
    Zhang, Fang-Fei
    He, Liang
    Yin, Jie
    Wang, Cong-Shan
    Hu, Hui-Ying
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [37] Parallel and cyclic hybrid subgradient extragradient methods for variational inequalities
    Hieu D.V.
    Afrika Matematika, 2017, 28 (5-6) : 677 - 692
  • [38] Subgradient Extragradient Method with Double Inertial Steps for Variational Inequalities
    Yonghong Yao
    Olaniyi S. Iyiola
    Yekini Shehu
    Journal of Scientific Computing, 2022, 90
  • [39] Subgradient Extragradient Method with Double Inertial Steps for Variational Inequalities
    Yao, Yonghong
    Iyiola, Olaniyi S.
    Shehu, Yekini
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (02)
  • [40] A Class of Novel Mann-Type Subgradient Extragradient Algorithms for Solving Quasimonotone Variational Inequalities
    Wairojjana, Nopparat
    Argyros, Ioannis K.
    Shutaywi, Meshal
    Deebani, Wejdan
    Argyros, Christopher I.
    SYMMETRY-BASEL, 2021, 13 (07):