Modified Subgradient Extragradient Algorithms with A New Line-Search Rule for Variational Inequalities

被引:0
|
作者
Xian-Jun Long
Jing Yang
Yeol Je Cho
机构
[1] Chongqing Technology and Business University,School of Mathematics and Statistics
[2] Chongqing Technology and Business University,Chongqing Key Laboratory of Social Economy and Applied Statistics
[3] Gyeongsang National University,Department of Mathematics Education
[4] China Medical University,Center for General Education
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Variational inequality; Golden ratio; Pseudomonotone mapping; Strong convergence; Line-search rule; 90C26; 90C34; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a modified subgradient extragradient algorithm with a new line-search rule for solving pseudomonotone variational inequalities with non-Lipschitz mappings. The new line-search rule is designed by the golden radio (5+1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sqrt{5}+1)/2$$\end{document}. We prove the strong convergence theorem under some appropriate conditions in real Hilbert spaces. Finally, we give some numerical experiments to illustrate the performances and advantages of the proposed algorithm.
引用
收藏
相关论文
共 50 条
  • [21] Modified extragradient-like algorithms with new stepsizes for variational inequalities
    Dang Van Hieu
    Pham Ky Anh
    Le Dung Muu
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 913 - 932
  • [22] Two modified extragradient algorithms for solving variational inequalities
    Hai, Trinh Ngoc
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (01) : 91 - 106
  • [23] Two modified extragradient algorithms for solving variational inequalities
    Trinh Ngoc Hai
    Journal of Global Optimization, 2020, 78 : 91 - 106
  • [24] A modified popov's subgradient extragradient method for variational inequalities in banach spaces
    Sunthrayuth P.
    Rehman H.U.
    Kumam P.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [25] A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities
    Rehman, Habib Ur
    Kumam, Wiyada
    Sombut, Kamonrat
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 981 - 992
  • [26] New subgradient extragradient algorithm for solving variational inequalities in Hadamard manifold
    Oyewole, O. K.
    OPTIMIZATION, 2024, 73 (08) : 2585 - 2607
  • [27] A MODIFIED POPOV'S SUBGRADIENT EXTRAGRADIENT METHOD FOR VARIATIONAL INEQUALITIES IN BANACH SPACES
    Sunthrayuth, Pongsakorn
    Rehman, Habib Ur
    Kumam, Poom
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [28] Revisiting subgradient extragradient methods for solving variational inequalities
    Tan, Bing
    Qin, Xiaolong
    Cho, Sun Young
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1593 - 1615
  • [29] Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints
    Ceng, L. C.
    Petrusel, A.
    Qin, X.
    Yao, J. C.
    OPTIMIZATION, 2021, 70 (5-6) : 1337 - 1358
  • [30] Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems
    Duong Viet Thong
    Dang Van Hieu
    OPTIMIZATION, 2018, 67 (01) : 83 - 102