Virtual Betti numbers of mapping tori of 3-manifolds

被引:0
|
作者
Christoforos Neofytidis
机构
[1] Ohio State University,Department of Mathematics
来源
Mathematische Zeitschrift | 2020年 / 296卷
关键词
Virtual Betti numbers; Mapping tori of reducible 3-manifolds; Degree one maps; 57M05; 57M10; 57M50; 55M25; 57N37;
D O I
暂无
中图分类号
学科分类号
摘要
Given a reducible 3-manifold M with an aspherical summand in its prime decomposition and a homeomorphism f:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M\rightarrow M$$\end{document}, we construct a map of degree one from a finite cover of M⋊fS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\rtimes _f S^1$$\end{document} to a mapping torus of a certain aspherical 3-manifold. We deduce that M⋊fS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\rtimes _f S^1$$\end{document} has virtually infinite first Betti number, except when all aspherical summands of M are virtual T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^2$$\end{document}-bundles. This verifies all cases of a conjecture of T.-J. Li and Y. Ni, that any mapping torus of a reducible 3-manifold M not covered by S2×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^2\times S^1$$\end{document} has virtually infinite first Betti number, except when M is virtually (#nT2⋊S1)#(#mS2×S1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\#_n T^2\rtimes S^1)\#(\#_mS^2\times S^1)$$\end{document}. Li-Ni’s conjecture was recently confirmed by Ni with a group theoretic result, namely, by showing that there exists a π1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1$$\end{document}-surjection from a finite cover of any mapping torus of a reducible 3-manifold to a certain mapping torus of #mS2×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#_m S^2\times S^1$$\end{document} and using the fact that free-by-cyclic groups are large when the free group is generated by more than one element.
引用
收藏
页码:1691 / 1700
页数:9
相关论文
共 50 条