The simplicial volume of mapping tori of 3-manifolds

被引:0
|
作者
Michelle Bucher
Christoforos Neofytidis
机构
[1] Université de Genève,Section de Mathématiques
来源
Mathematische Annalen | 2020年 / 376卷
关键词
57M05; 55R10; 57R22; 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that any mapping torus of a closed 3-manifold has zero simplicial volume. When the fiber is a prime 3-manifold, classification results can be applied to show vanishing of the simplicial volume, however the case of reducible fibers is by far more subtle. We thus analyse the possible self-homeomorphisms of reducible 3-manifolds, and use this analysis to produce an explicit representative of the fundamental class of the corresponding mapping tori. To this end, we introduce a new technique for understanding self-homeomorphisms of connected sums in arbitrary dimensions on the level of classifying spaces and for computing the simplicial volume. In particular, we extend our computations to mapping tori of certain connected sums in higher dimensions. Our main result completes the picture for the vanishing of the simplicial volume of fiber bundles in dimension four. Moreover, we deduce that dimension four together with the trivial case of dimension two are the only dimensions where all mapping tori have vanishing simplicial volume. As a group theoretic consequence, we derive an alternative proof of the fact that the fundamental group G of a mapping torus of a 3-manifold M is Gromov hyperbolic if and only if M is virtually a connected sum #S2×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\# S^2\times S^1$$\end{document} and G does not contain Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^2$$\end{document}.
引用
收藏
页码:1429 / 1447
页数:18
相关论文
共 50 条
  • [1] The simplicial volume of mapping tori of 3-manifolds
    Bucher, Michelle
    Neofytidis, Christoforos
    MATHEMATISCHE ANNALEN, 2020, 376 (3-4) : 1429 - 1447
  • [2] THE SIMPLICIAL VOLUME OF CONTRACTIBLE 3-MANIFOLDS
    Bargagnati, Giuseppe
    Frigerio, Roberto
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (05) : 3305 - 3323
  • [3] The simplicial volume of 3-manifolds with boundary
    Bucher, Michelle
    Frigerio, Roberto
    Pagliantini, Cristina
    JOURNAL OF TOPOLOGY, 2015, 8 (02) : 457 - 475
  • [4] Stable integral simplicial volume of 3-manifolds
    Fauser, Daniel
    Loeh, Clara
    Moraschini, Marco
    Quintanilha, Jose Pedro
    JOURNAL OF TOPOLOGY, 2021, 14 (02) : 608 - 640
  • [5] Integral foliated simplicial volume of hyperbolic 3-manifolds
    Loeh, Clara
    Pagliantini, Cristina
    GROUPS GEOMETRY AND DYNAMICS, 2016, 10 (03) : 825 - 865
  • [6] Virtual Betti numbers of mapping tori of 3-manifolds
    Christoforos Neofytidis
    Mathematische Zeitschrift, 2020, 296 : 1691 - 1700
  • [7] Virtual Betti numbers of mapping tori of 3-manifolds
    Neofytidis, Christoforos
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 1691 - 1700
  • [8] The minimal entropy problem for 3-manifolds with zero simplicial volume
    Anderson, JW
    Paternain, GP
    ASTERISQUE, 2003, (286) : 63 - 79
  • [9] QUANTIZATION OF TORI AND 3-MANIFOLDS
    FUNAR, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (12): : 1179 - 1184
  • [10] Positive simplicial volume implies virtually positive Seifert volume for 3-manifolds
    Derbez, Pierre
    Liu, Yi
    Sun, Hongbin
    Wang, Shicheng
    GEOMETRY & TOPOLOGY, 2017, 21 (05) : 3159 - 3190