Virtual Betti numbers;
Mapping tori of reducible 3-manifolds;
Degree one maps;
57M05;
57M10;
57M50;
55M25;
57N37;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Given a reducible 3-manifold M with an aspherical summand in its prime decomposition and a homeomorphism f:M→M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:M\rightarrow M$$\end{document}, we construct a map of degree one from a finite cover of M⋊fS1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M\rtimes _f S^1$$\end{document} to a mapping torus of a certain aspherical 3-manifold. We deduce that M⋊fS1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M\rtimes _f S^1$$\end{document} has virtually infinite first Betti number, except when all aspherical summands of M are virtual T2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T^2$$\end{document}-bundles. This verifies all cases of a conjecture of T.-J. Li and Y. Ni, that any mapping torus of a reducible 3-manifold M not covered by S2×S1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^2\times S^1$$\end{document} has virtually infinite first Betti number, except when M is virtually (#nT2⋊S1)#(#mS2×S1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\#_n T^2\rtimes S^1)\#(\#_mS^2\times S^1)$$\end{document}. Li-Ni’s conjecture was recently confirmed by Ni with a group theoretic result, namely, by showing that there exists a π1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi _1$$\end{document}-surjection from a finite cover of any mapping torus of a reducible 3-manifold to a certain mapping torus of #mS2×S1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\#_m S^2\times S^1$$\end{document} and using the fact that free-by-cyclic groups are large when the free group is generated by more than one element.
机构:
Univ Sao Paulo, IME, Dept Matemat, BR-05314970 Sao Paulo, BrazilUniv Sao Paulo, IME, Dept Matemat, BR-05314970 Sao Paulo, Brazil
Goncalves, Daciberg
Wong, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Bates Coll, Dept Math, Lewiston, ME 04240 USAUniv Sao Paulo, IME, Dept Matemat, BR-05314970 Sao Paulo, Brazil
Wong, Peter
Zhao, Xuezhi
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Inst Math & Interdisciplinary Sci, Beijing 100048, Peoples R ChinaUniv Sao Paulo, IME, Dept Matemat, BR-05314970 Sao Paulo, Brazil