In this paper we consider a Cauchy integral on elliptic curve Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} parameterized by equation η(t)=acost+ibsint,a,b>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta (t)=a \cos t+ib \sin t, a,b>0$$\end{document}. We drive a formula for the boundary values of the Cauchy integral when integral function is Hölder continuous on Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document}. Hence we extend Hilbert transform to elliptic curves.
机构:
Tokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, JapanTokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, Japan