Boundary value formula for the Cauchy integral on elliptic curve

被引:0
|
作者
Mukhiddin I. Muminov
A. H. M. Murid
机构
[1] Universiti Teknologi Malaysia,Department of Mathematical Sciences, Faculty of Science
[2] Universiti Teknologi Malaysia,UTM Centre for Industrial and Applied Mathematics (UTM
关键词
Cauchy integral; Boundary value; Hilbert transform; Primary 30E25; 30C75; Secondary 45E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a Cauchy integral on elliptic curve Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} parameterized by equation η(t)=acost+ibsint,a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta (t)=a \cos t+ib \sin t, a,b>0$$\end{document}. We drive a formula for the boundary values of the Cauchy integral when integral function is Hölder continuous on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. Hence we extend Hilbert transform to elliptic curves.
引用
收藏
页码:837 / 851
页数:14
相关论文
共 50 条