Plemelj Formula for Cauchy Type Integral on Certain Distinguished Boundary in Universal Clifford Analysis

被引:3
|
作者
XU Na
机构
基金
中国国家自然科学基金;
关键词
universal Clifford analysis; Cauchy type integral; Plemelj formula;
D O I
暂无
中图分类号
O175.5 [积分方程];
学科分类号
摘要
Under the foundation of Cauchy integral formula on certain distinguished boundary for functions with values in universal Clifford algebra,we define the Cauchy type integral with values in a universal Clifford algebra,obtain its Cauchy principal value and Plemelj formula on certain distinguished boundary.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [1] Cauchy Integral Formula on the Distinguished Boundary with Values in Complex Universal Clifford Algebra
    Xu, Na
    Li, Zunfeng
    Yang, Heju
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)
  • [2] Cauchy Integral Formula on the Distinguished Boundary with Values in Complex Universal Clifford Algebra
    Na Xu
    Zunfeng Li
    Heju Yang
    Advances in Applied Clifford Algebras, 2021, 31
  • [3] Cauchy integral formula and Plemelj formula of bihypermonogenic functions in real Clifford analysis
    Bian, Xiaoli
    Eriksson, Sirkka-Liisa
    Li, Junxia
    Qiao, Yuying
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (10) : 957 - 976
  • [4] Plemelj formula of Cauchy type integral on Stein manifolds
    Chen, LP
    Lin, LG
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (04) : 647 - 657
  • [5] PLEMELJ FORMULA OF CAUCHY TYPE INTEGRAL ON STEIN MANIFOLDS
    陈吕萍
    林良裕
    ActaMathematicaScientia, 2005, (04) : 647 - 657
  • [6] Plemelj Formula for Bergman Integral on Unit Ball in Hermitean Clifford Analysis
    Ku, Min
    He, Fuli
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 207 - 214
  • [7] Cauchy-type integral formula and Plemelj formula of hypermonogenic functions on unbounded domains
    Bian, Xiaoli
    Li, Junxia
    Qiao, Yuying
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (06) : 757 - 775
  • [8] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Moreno Garcia, Arsenio
    Moreno Garcia, Tania
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1147 - 1159
  • [9] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Li, Zunfeng
    Yang, Heju
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [10] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Arsenio Moreno García
    Tania Moreno García
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Advances in Applied Clifford Algebras, 2017, 27 : 1147 - 1159