Biharmonic Homogeneous Polynomial Maps Between Spheres

被引:0
|
作者
Rareş Ambrosie
Cezar Oniciuc
Ye-Lin Ou
机构
[1] Al. I. Cuza University of Iasi,Faculty of Mathematics
[2] Texas A & M University-Commerce,Department of Mathematics
来源
Results in Mathematics | 2023年 / 78卷
关键词
Biharmonic maps; spherical maps; homogeneous polynomial maps; 53C43; 35G20; 15A63;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we first prove a characterization formula for biharmonic maps in Euclidean spheres and, as an application, we construct a family of biharmonic maps from a flat 2-dimensional torus T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document} into the 3-dimensional unit Euclidean sphere S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^3$$\end{document}. Then, for the special case of maps between spheres whose components are given by homogeneous polynomials of the same degree, we find a more specific form for their bitension field. Further, we apply this formula to the case when the degree is 2, and we obtain the classification of all proper biharmonic quadratic forms from S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^1$$\end{document} to Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, from Sm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^m$$\end{document} to S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^2$$\end{document}, m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document}, and from Sm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^m$$\end{document} to S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^3$$\end{document}, m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Subelliptic Biharmonic Maps
    Dragomir, Sorin
    Montaldo, Stefano
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 223 - 245
  • [42] The geometry of biharmonic maps
    Urakawa, H.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 159 - 175
  • [43] On univalence of biharmonic maps
    Muhanna, Yusuf
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (08) : 745 - 751
  • [44] On biharmonic maps and their generalizations
    Pawel Strzelecki
    Calculus of Variations and Partial Differential Equations, 2003, 18 : 401 - 432
  • [45] Biharmonic Riemannian maps
    Sahin, Bayram
    ANNALES POLONICI MATHEMATICI, 2011, 102 (01) : 39 - 49
  • [46] Existence of biharmonic curves and symmetric biharmonic maps
    Mou, LB
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 284 - 291
  • [47] POLYNOMIAL PROPER MAPS BETWEEN BALLS
    D'ANGELO, JP
    DUKE MATHEMATICAL JOURNAL, 1988, 57 (01) : 211 - 219
  • [48] Polynomial and Rational Maps between Balls
    Faran, James
    Huang, Xiaojun
    Ji, Shanyu
    Zhang, Yuan
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (03) : 829 - 842
  • [49] BIHARMONIC IMMERSIONS INTO SPHERES AND ELLIPSOIDS
    Montaldo, S.
    Oniciuc, C.
    Ratto, A.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 59 (04): : 425 - 442
  • [50] Biharmonic PNMC submanifolds in spheres
    Balmus, Adina
    Montaldo, Stefano
    Oniciuc, Cezar
    ARKIV FOR MATEMATIK, 2013, 51 (02): : 197 - 221