Biharmonic Homogeneous Polynomial Maps Between Spheres

被引:0
|
作者
Rareş Ambrosie
Cezar Oniciuc
Ye-Lin Ou
机构
[1] Al. I. Cuza University of Iasi,Faculty of Mathematics
[2] Texas A & M University-Commerce,Department of Mathematics
来源
Results in Mathematics | 2023年 / 78卷
关键词
Biharmonic maps; spherical maps; homogeneous polynomial maps; 53C43; 35G20; 15A63;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we first prove a characterization formula for biharmonic maps in Euclidean spheres and, as an application, we construct a family of biharmonic maps from a flat 2-dimensional torus T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document} into the 3-dimensional unit Euclidean sphere S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^3$$\end{document}. Then, for the special case of maps between spheres whose components are given by homogeneous polynomials of the same degree, we find a more specific form for their bitension field. Further, we apply this formula to the case when the degree is 2, and we obtain the classification of all proper biharmonic quadratic forms from S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^1$$\end{document} to Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, from Sm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^m$$\end{document} to S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^2$$\end{document}, m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document}, and from Sm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^m$$\end{document} to S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {S}}}}^3$$\end{document}, m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Rotationally symmetric biharmonic maps between models
    Montaldo, S.
    Oniciuc, C.
    Ratto, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 494 - 508
  • [22] Biharmonic maps between warped product manifolds
    Balmus, A.
    Montaldo, S.
    Oniciuc, C.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 449 - 466
  • [23] Dilatation of maps between spheres
    Peng, CK
    Tang, ZZ
    PACIFIC JOURNAL OF MATHEMATICS, 2002, 204 (01) : 209 - 222
  • [24] Harmonic maps between spheres
    Bizon, P
    Chmaj, T
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1957): : 403 - 415
  • [25] Biharmonic tori in spheres
    Fetcu, Dorel
    Loubeau, Eric
    Oniciuc, Cezar
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 : 208 - 225
  • [26] Biharmonic submanifolds in spheres
    Caddeo, R
    Montaldo, S
    Oniciuc, C
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) : 109 - 123
  • [27] Biharmonic submanifolds in spheres
    R. Caddeo
    S. Montaldo
    C. Oniciuc
    Israel Journal of Mathematics, 2002, 130 : 109 - 123
  • [28] Harmonic Maps and Biharmonic Maps
    Urakawa, Hajime
    SYMMETRY-BASEL, 2015, 7 (02): : 651 - 674
  • [29] TRANSVERSALLY BIHARMONIC MAPS BETWEEN FOLIATED RIEMANNIAN MANIFOLDS
    Chiang, Yuan-Jen
    Wolak, Robert A.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (08) : 981 - 996
  • [30] Biharmonic maps between doubly warped product manifolds
    Perktas, Selcen Yueksel
    Kilic, Erol
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 159 - 170