Negative Ricci curvature on some non-solvable Lie groups

被引:0
|
作者
Cynthia E. Will
机构
[1] Universidad Nacional de Córdoba,
[2] FaMAF and CIEM,undefined
来源
Geometriae Dedicata | 2017年 / 186卷
关键词
Ricci curvature; Lie groups; Riemannian metrics; 53C30; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for any non-trivial representation (V,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V, \pi )$$\end{document} of u(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2)$$\end{document} with the center acting as multiples of the identity, the semidirect product u(2)⋉πV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that u(2)⋉πV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SU}(2)$$\end{document} admitting a left invariant metric with negative Ricci is therefore obtained for any n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 7$$\end{document}.
引用
收藏
页码:181 / 195
页数:14
相关论文
共 50 条