Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality

被引:0
|
作者
Leonid Positselski
机构
[1] University of Haifa,Department of Mathematics, Faculty of Natural Sciences
[2] National Research University Higher School of Economics,Laboratory of Algebraic Geometry
[3] Institute for Information Transmission Problems,Sector of Algebra and Number Theory
来源
Selecta Mathematica | 2017年 / 23卷
关键词
16E35; 13D09; 16D90; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
For a left coherent ring A with every left ideal having a countable set of generators, we show that the coderived category of left A-modules is compactly generated by the bounded derived category of finitely presented left A-modules (reproducing a particular case of a recent result of Št’ovíček with our methods). Furthermore, we present the definition of a dualizing complex of fp-injective modules over a pair of noncommutative coherent rings A and B, and construct an equivalence between the coderived category of A-modules and the contraderived category of B-modules. Finally, we define the notion of a relative dualizing complex of bimodules for a pair of noncommutative ring homomorphisms A⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\longrightarrow R$$\end{document} and B⟶S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\longrightarrow S$$\end{document}, and obtain an equivalence between the R / A-semicoderived category of R-modules and the S / B-semicontraderived category of S-modules. For a homomorphism of commutative rings A⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\longrightarrow R$$\end{document}, we also construct a tensor structure on the R / A-semicoderived category of R-modules. A vision of semi-infinite algebraic geometry is discussed in the introduction.
引用
收藏
页码:1279 / 1307
页数:28
相关论文
共 50 条
  • [41] Absolutely w-Pure Modules and Weak FP-Injective Dimensions
    Qing Li
    Results in Mathematics, 2022, 77
  • [42] Absolutely w-Pure Modules and Weak FP-Injective Dimensions
    Li, Qing
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [43] On relative injective modules and relative coherent rings
    Mao, Lixin
    Ding, Nanqing
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2531 - 2545
  • [44] Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules
    Feickert, Aaron J.
    Sather-Wagstaff, Sean
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (02) : 297 - 319
  • [45] Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules
    Aaron J. Feickert
    Sean Sather-Wagstaff
    Algebras and Representation Theory, 2019, 22 : 297 - 319
  • [46] Coherent rings with finite self-FP-injective dimension
    Ding, NQ
    Chen, JL
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) : 2963 - 2980
  • [47] GORENSTEIN FLAT COMPLEXES OVER COHERENT RINGS WITH FINITE SELF-FP-INJECTIVE DIMENSION
    Wang Zhanping
    Liu Zhongkui
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) : 4362 - 4374
  • [48] FP-gr-injective modules and gr-FC-rings
    Asensio, MJ
    Ramos, JAL
    Torrecillas, B
    ALGEBRA AND NUMBER THEORY, 2000, 208 : 1 - 11
  • [49] On n-Coherent Rings and (n, d)-Injective Modules
    Zhang, Dongdong
    Ouyang, Baiyu
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 349 - 360
  • [50] On (m, n)-injective modules and (m, n)-coherent rings
    Zhang, XX
    Chen, JL
    Zhang, J
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 149 - 160