Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality

被引:0
|
作者
Leonid Positselski
机构
[1] University of Haifa,Department of Mathematics, Faculty of Natural Sciences
[2] National Research University Higher School of Economics,Laboratory of Algebraic Geometry
[3] Institute for Information Transmission Problems,Sector of Algebra and Number Theory
来源
Selecta Mathematica | 2017年 / 23卷
关键词
16E35; 13D09; 16D90; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
For a left coherent ring A with every left ideal having a countable set of generators, we show that the coderived category of left A-modules is compactly generated by the bounded derived category of finitely presented left A-modules (reproducing a particular case of a recent result of Št’ovíček with our methods). Furthermore, we present the definition of a dualizing complex of fp-injective modules over a pair of noncommutative coherent rings A and B, and construct an equivalence between the coderived category of A-modules and the contraderived category of B-modules. Finally, we define the notion of a relative dualizing complex of bimodules for a pair of noncommutative ring homomorphisms A⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\longrightarrow R$$\end{document} and B⟶S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\longrightarrow S$$\end{document}, and obtain an equivalence between the R / A-semicoderived category of R-modules and the S / B-semicontraderived category of S-modules. For a homomorphism of commutative rings A⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\longrightarrow R$$\end{document}, we also construct a tensor structure on the R / A-semicoderived category of R-modules. A vision of semi-infinite algebraic geometry is discussed in the introduction.
引用
收藏
页码:1279 / 1307
页数:28
相关论文
共 50 条
  • [11] Pure projective modules and FP-injective modules over Morita rings
    Yan, Meiqi
    Yao, Hailou
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) : 1265 - 1293
  • [12] Pure projective modules and FP-injective modules over Morita rings
    Meiqi Yan
    Hailou Yao
    Frontiers of Mathematics in China, 2020, 15 : 1265 - 1293
  • [13] FP-injective Complexes
    Mao, Lixin
    Ding, Nanqing
    RING AND MODULE THEORY, 2010, : 135 - +
  • [14] FP-INJECTIVE COMPLEXES
    Yang, Xiaoyan
    Liu, Zhongkui
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (01) : 131 - 142
  • [15] Strongly FP-injective modules
    Li, Weiqing
    Guan, Jiancheng
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 3816 - 3824
  • [16] SELF FP-INJECTIVE RINGS
    COUCHOT, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (11): : 579 - 582
  • [17] RESTRICTED M-INJECTIVE MODULES AND FP-INJECTIVE ENDOMORPHISM-RINGS
    WISBAUER, R
    COMMUNICATIONS IN ALGEBRA, 1986, 14 (02) : 255 - 276
  • [18] Weak Dimension of FP-injective Modules Over Chain Rings
    Couchot, Francois
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 381 - 389
  • [19] Notes on FP-projective modules and FP-injective modules
    Mao, LX
    Ding, NQ
    Advances in Ring Theory, Proceedings, 2005, : 151 - 166
  • [20] ON STRONGLY GORENSTEIN FP-INJECTIVE MODULES
    Gao, Zenghui
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (08) : 3035 - 3044