Some results on divisor problems related to cusp forms

被引:0
|
作者
Wei Zhang
机构
[1] Shandong University,School of Mathematics
来源
The Ramanujan Journal | 2020年 / 53卷
关键词
Fourier coefficients; Cusp forms; Automorphic ; -function; Divisor problem; 11N37; 11F70;
D O I
暂无
中图分类号
学科分类号
摘要
Let λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(n)$$\end{document} be the normalized Fourier coefficients of a holomorphic Hecke cusp form of full level. We study a generalized divisor problem with λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(n)$$\end{document} over some special sequences. More precisely, for any fixed integer k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} and j∈{1,2,3,4},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{1,2,3,4\},$$\end{document} we are interested in the following sums Sk(x,j):=∑n≤xλk,f(nj)=∑n≤x∑n=n1n2⋯nkλf(n1j)λf(n2j)⋯λf(nkj).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S_{k}(x,j):=\sum _{n\le x}\lambda _{k,f}(n^{j})=\sum _{n\le x}\sum _{n=n_{1}n_{2}\cdots n_{k}}\lambda _{f}(n_{1}^{j})\lambda _{f}(n_{2}^{j})\cdots \lambda _{f}(n_{k}^{j}). \end{aligned}$$\end{document}
引用
收藏
页码:75 / 83
页数:8
相关论文
共 50 条
  • [41] A note on the characterizations of Jacobi cusp forms and cusp forms of Maass Spezialschar
    Kohnen, Winfried
    Lim, Jongryul
    RAMANUJAN JOURNAL, 2015, 37 (03): : 535 - 539
  • [42] ON THE LIFTING OF HILBERT CUSP FORMS TO HILBERT-SIEGEL CUSP FORMS
    Ikeda, Tamotsu
    Yamana, Shunsuke
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1121 - 1181
  • [43] A note on the characterizations of Jacobi cusp forms and cusp forms of Maass Spezialschar
    Winfried Kohnen
    Jongryul Lim
    The Ramanujan Journal, 2015, 37 : 535 - 539
  • [44] On the lifting of elliptic cusp forms to cusp forms on quaternionic unitary groups
    Yamana, Shunsuke
    JOURNAL OF NUMBER THEORY, 2010, 130 (11) : 2480 - 2527
  • [45] Some Results on the Domination Number of a Zero-divisor Graph
    Kiani, Sima
    Maimani, Hamid Reza
    Nikandish, Reza
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 573 - 578
  • [46] Theta divisor and differential forms
    Tong, Jilong
    MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) : 521 - 569
  • [47] SOME RESULTS ON COZERO-DIVISOR GRAPH OF A COMMUTATIVE RING
    Akbari, S.
    Alizadeh, F.
    Khojasteh, S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (03)
  • [48] On the coefficients of cusp forms
    Ramakrishnan, D
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (2-3) : 295 - 307
  • [49] SUPERLACUNARY CUSP FORMS
    ONO, K
    ROBINS, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) : 1021 - 1029
  • [50] PARAMODULAR CUSP FORMS
    Poor, Cris
    Yuen, David S.
    MATHEMATICS OF COMPUTATION, 2015, 84 (293) : 1401 - 1438