共 50 条
Some results on divisor problems related to cusp forms
被引:0
|作者:
Wei Zhang
机构:
[1] Shandong University,School of Mathematics
来源:
关键词:
Fourier coefficients;
Cusp forms;
Automorphic ;
-function;
Divisor problem;
11N37;
11F70;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let λf(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _{f}(n)$$\end{document} be the normalized Fourier coefficients of a holomorphic Hecke cusp form of full level. We study a generalized divisor problem with λf(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _{f}(n)$$\end{document} over some special sequences. More precisely, for any fixed integer k≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 2$$\end{document} and j∈{1,2,3,4},\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$j\in \{1,2,3,4\},$$\end{document} we are interested in the following sums Sk(x,j):=∑n≤xλk,f(nj)=∑n≤x∑n=n1n2⋯nkλf(n1j)λf(n2j)⋯λf(nkj).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} S_{k}(x,j):=\sum _{n\le x}\lambda _{k,f}(n^{j})=\sum _{n\le x}\sum _{n=n_{1}n_{2}\cdots n_{k}}\lambda _{f}(n_{1}^{j})\lambda _{f}(n_{2}^{j})\cdots \lambda _{f}(n_{k}^{j}). \end{aligned}$$\end{document}
引用
收藏
页码:75 / 83
页数:8
相关论文