Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields

被引:0
|
作者
V. P. Platonov
M. M. Petrunin
机构
[1] Scientific Research Institute for System Analysis of the Russian Academy of Sciences,
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We construct a theory of periodic and quasiperiodic functional continued fractions in the field k((h)) for a linear polynomial h and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and S-units for appropriate sets S. We prove the periodicity of quasiperiodic elements of the form f/dhs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt f /d{h^s}$$\end{document}, where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt f $$\end{document} is periodic. We also analyze the continued fraction expansion of the key element f/hg+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt f /{h^{g + 1}}$$\end{document}, which defines the set of quasiperiodic elements of a hyperelliptic field.
引用
收藏
页码:336 / 357
页数:21
相关论文
共 50 条
  • [41] Continued rational fractions in hyperelliptic fields and the Mumford representation
    Platonov, V. P.
    Zhgoon, V. S.
    Fedorov, G. V.
    DOKLADY MATHEMATICS, 2016, 94 (03) : 692 - 696
  • [42] Continued Fractions in Hyperelliptic Fields with an Arbitrarily Long Period
    Platonov, V. P.
    Fedorov, G. V.
    DOKLADY MATHEMATICS, 2024, 109 (02) : 147 - 151
  • [43] Continued rational fractions in hyperelliptic fields and the Mumford representation
    V. P. Platonov
    V. S. Zhgoon
    G. V. Fedorov
    Doklady Mathematics, 2016, 94 : 692 - 696
  • [44] Non-periodic continued fractions in hyperelliptic function fields
    van der Poorten, AJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (02) : 331 - 343
  • [45] FINITENESS AND PERIODICITY OF CONTINUED FRACTIONS OVER QUADRATIC NUMBER FIELDS
    Masakova, Zuzana
    Vavra, Tomas
    Veneziano, Francesco
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (01): : 77 - 109
  • [46] On a variant of Pillai's problem with factorials and S-units
    Faye, Bernadette
    Luca, Florian
    Ziegler, Volker
    RAMANUJAN JOURNAL, 2024, 63 (03): : 773 - 802
  • [47] On a variant of Pillai’s problem with factorials and S-units
    Bernadette Faye
    Florian Luca
    Volker Ziegler
    The Ramanujan Journal, 2024, 63 : 773 - 802
  • [48] S-UNITS AND S-CLASS GROUP IN ALGEBRAIC FUNCTION FIELDS
    ROSEN, M
    JOURNAL OF ALGEBRA, 1973, 26 (01) : 98 - 108
  • [50] On a variant of Pillai’s problem involving S-units and Fibonacci numbers
    Volker Ziegler
    Boletín de la Sociedad Matemática Mexicana, 2022, 28