Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields

被引:0
|
作者
V. P. Platonov
M. M. Petrunin
机构
[1] Scientific Research Institute for System Analysis of the Russian Academy of Sciences,
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We construct a theory of periodic and quasiperiodic functional continued fractions in the field k((h)) for a linear polynomial h and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and S-units for appropriate sets S. We prove the periodicity of quasiperiodic elements of the form f/dhs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt f /d{h^s}$$\end{document}, where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt f $$\end{document} is periodic. We also analyze the continued fraction expansion of the key element f/hg+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt f /{h^{g + 1}}$$\end{document}, which defines the set of quasiperiodic elements of a hyperelliptic field.
引用
收藏
页码:336 / 357
页数:21
相关论文
共 50 条
  • [31] On S-units for valuations of the second degree in hyperelliptic fields
    Fedorov, G. V.
    IZVESTIYA MATHEMATICS, 2020, 84 (02) : 392 - 435
  • [32] On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field
    V. P. Platonov
    V. S. Zhgoon
    G. V. Fedorov
    Doklady Mathematics, 2018, 98 : 430 - 434
  • [33] On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field
    Platonov, V. P.
    Zhgoon, V. S.
    Fedorov, G. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 430 - 434
  • [34] On the problem of classification of periodic continued fractions in hyperelliptic fields
    Platonov, V. P.
    Fedorov, C., V
    RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (04) : 785 - 787
  • [35] On the Parametrization of Hyperelliptic Fields with S-Units of Degrees 7 and 9
    Fedorov, G., V
    Zhgoon, V. S.
    Petrunin, M. M.
    Shteinikov, Yu N.
    MATHEMATICAL NOTES, 2022, 112 (3-4) : 451 - 457
  • [36] Continued fractions in hyperelliptic function fields
    Berry, TG
    CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2000, : 29 - 41
  • [37] On the Periodicity Problem for the Continued Fraction Expansion of Elements of Hyperelliptic Fields with FundamentalS-Units of Degree at Most 11
    V. P. Platonov
    M. M. Petrunin
    Yu. N. Shteinikov
    Doklady Mathematics, 2021, 104 : 258 - 263
  • [38] On the periodicity of continued fractions in elliptic fields
    Platonov, V. P.
    Fedorov, G. V.
    DOKLADY MATHEMATICS, 2017, 96 (01) : 332 - 335
  • [39] On the periodicity of continued fractions in elliptic fields
    V. P. Platonov
    G. V. Fedorov
    Doklady Mathematics, 2017, 96 : 332 - 335
  • [40] S-units attached to genus 3 hyperelliptic curves
    Arledge, J
    JOURNAL OF NUMBER THEORY, 1997, 63 (01) : 12 - 29