SKZC: self-distillation and k-nearest neighbor-based zero-shot classification

被引:0
|
作者
Sun, Muyang [1 ]
Jia, Haitao [2 ]
机构
[1] University of Electronic Science and Technology of China, Yangyze Delta Region Institute (Huzhou), 819 Xisai Mountain Road, Building B1, 7th Floor, Zhejiang, Huzhou,313000, China
[2] University of Electronic Science and Technology of China, School of Resources and Environment, No. 2006, Xiyuan Avenue, Sichuan, Chengdu,611731, China
来源
关键词
59;
D O I
10.1186/s44147-024-00429-3
中图分类号
学科分类号
摘要
Zero-shot learning represents a formidable paradigm in machine learning, wherein the crux lies in distilling and generalizing knowledge from observed classes to novel ones. The objective is to identify unfamiliar objects that were not included in the model’s training, leveraging learned patterns and knowledge from previously encountered categories. As a crucial subtask of open-world object detection, zero-shot classification can also provide insights and solutions for this field. Despite its potential, current zero-shot classification models often suffer from a performance gap due to limited transfer ability and discriminative capability of learned representations. In pursuit of advancing the subpar state of zero-shot object classification, this paper introduces a novel model for image classification which can be applied to object detection, namely, self-distillation and k-nearest neighbor-based zero-shot classification method. First, we employ a diffusion detector to identify potential objects in images. Then, self-distillation and distance-based classifiers are used for distinguishing unseen objects from seen classes. The k-nearest neighbor-based cluster heads are designed to cluster the unseen objects. Extensive experiments and visualizations were conducted on publicly available datasets on the efficacy of the proposed approach. Precisely, our model demonstrates performance improvement of over 20% compared to contrastive clustering. Moreover, it achieves a precision of 0.910 and a recall of 0.842 on CIFAR-10 datasets, a precision of 0.737, and a recall of 0.688 on CIFAR-100 datasets for the macro average. Compared to a more recent model (SGFR), our model realized improvements of 10.9%, 13.3%, and 7.8% in Sacc, Uacc, and H metrics, respectively. This study aims to introduce fresh ideas into the domain of zero-shot image classification, and it can be applied to open-world object detection tasks. Our code is available at https://www.github.com/CmosWolf1/Code_implementation_for_paper_SKZC.
引用
收藏
相关论文
共 50 条
  • [41] k-Nearest Neighbor Classification Using Dissimilarity Increments
    Aidos, Helena
    Fred, Ana
    IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 27 - 33
  • [42] Style linear k-nearest neighbor classification method
    Zhang, Jin
    Bian, Zekang
    Wang, Shitong
    APPLIED SOFT COMPUTING, 2024, 150
  • [43] Distributed and Joint Evidential K-Nearest Neighbor Classification
    Gong, Chaoyu
    Demmel, Jim
    You, Yang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5972 - 5985
  • [44] A Review of a Text Classification Technique: K-Nearest Neighbor
    Zhou, R. S.
    Wang, Z. J.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 453 - 455
  • [45] Delving into gene-set multiplex networks facilitated by a k-nearest neighbor-based measure of similarity
    Zheng, Cheng
    Wang, Man
    Yamada, Ryo
    Okada, Daigo
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 4988 - 5002
  • [46] Application of the Improved K-Nearest Neighbor-Based Multi-Model Ensemble Method for Runoff Prediction
    Xie, Tao
    Chen, Lu
    Yi, Bin
    Li, Siming
    Leng, Zhiyuan
    Gan, Xiaoxue
    Mei, Ziyi
    WATER, 2024, 16 (01)
  • [47] A memetic algorithm based on k-nearest neighbor
    Xu, Jin
    Gu, Qiong
    Gai, Zhihua
    Gong, Wenyin
    Journal of Computational Information Systems, 2014, 10 (22): : 9565 - 9574
  • [48] Validation Based Modified K-Nearest Neighbor
    Parvin, Hamid
    Alizadeh, Hosein
    Minaei-Bidgoli, Behrouz
    IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES, VOL II, 2009, 1127 : 153 - 161
  • [49] A Large-Scale k-Nearest Neighbor Classification Algorithm Based on Neighbor Relationship Preservation
    Song, Yunsheng
    Kong, Xiaohan
    Zhang, Chao
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [50] Image classification based on self-distillation
    Yuting Li
    Linbo Qing
    Xiaohai He
    Honggang Chen
    Qiang Liu
    Applied Intelligence, 2023, 53 : 9396 - 9408