SKZC: self-distillation and k-nearest neighbor-based zero-shot classification

被引:0
|
作者
Sun, Muyang [1 ]
Jia, Haitao [2 ]
机构
[1] University of Electronic Science and Technology of China, Yangyze Delta Region Institute (Huzhou), 819 Xisai Mountain Road, Building B1, 7th Floor, Zhejiang, Huzhou,313000, China
[2] University of Electronic Science and Technology of China, School of Resources and Environment, No. 2006, Xiyuan Avenue, Sichuan, Chengdu,611731, China
来源
关键词
59;
D O I
10.1186/s44147-024-00429-3
中图分类号
学科分类号
摘要
Zero-shot learning represents a formidable paradigm in machine learning, wherein the crux lies in distilling and generalizing knowledge from observed classes to novel ones. The objective is to identify unfamiliar objects that were not included in the model’s training, leveraging learned patterns and knowledge from previously encountered categories. As a crucial subtask of open-world object detection, zero-shot classification can also provide insights and solutions for this field. Despite its potential, current zero-shot classification models often suffer from a performance gap due to limited transfer ability and discriminative capability of learned representations. In pursuit of advancing the subpar state of zero-shot object classification, this paper introduces a novel model for image classification which can be applied to object detection, namely, self-distillation and k-nearest neighbor-based zero-shot classification method. First, we employ a diffusion detector to identify potential objects in images. Then, self-distillation and distance-based classifiers are used for distinguishing unseen objects from seen classes. The k-nearest neighbor-based cluster heads are designed to cluster the unseen objects. Extensive experiments and visualizations were conducted on publicly available datasets on the efficacy of the proposed approach. Precisely, our model demonstrates performance improvement of over 20% compared to contrastive clustering. Moreover, it achieves a precision of 0.910 and a recall of 0.842 on CIFAR-10 datasets, a precision of 0.737, and a recall of 0.688 on CIFAR-100 datasets for the macro average. Compared to a more recent model (SGFR), our model realized improvements of 10.9%, 13.3%, and 7.8% in Sacc, Uacc, and H metrics, respectively. This study aims to introduce fresh ideas into the domain of zero-shot image classification, and it can be applied to open-world object detection tasks. Our code is available at https://www.github.com/CmosWolf1/Code_implementation_for_paper_SKZC.
引用
收藏
相关论文
共 50 条
  • [31] Categorical Data Classification based on Fuzzy K-Nearest Neighbor Approach
    Rustamaji, Heru Cahya
    Simanjuntak, Oliver Samuel
    Luhrie, Shalfa Fitriga
    Yuwono, Bambang
    Juwairiah
    2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0 - TOWARDS INNOVATION IN CYBER PHYSICAL SYSTEM, 2019, : 171 - 175
  • [32] A new belief-based K-nearest neighbor classification method
    Liu, Zhun-ga
    Pan, Quan
    Dezert, Jean
    PATTERN RECOGNITION, 2013, 46 (03) : 834 - 844
  • [33] A sequential weighted k-nearest neighbor classification method
    Zhu, Ming-Han
    Luo, Da-Yong
    Yi, Li-Qun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2009, 37 (11): : 2584 - 2588
  • [34] Infrared Face Recognition Based on Histogram and K-Nearest Neighbor Classification
    Wang, Shangfei
    Liu, Zhilei
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 2, PROCEEDINGS, 2010, 6064 : 104 - 111
  • [35] Locality constrained representation-based K-nearest neighbor classification
    Gou, Jianping
    Qiu, Wenmo
    Yi, Zhang
    Shen, Xiangjun
    Zhan, Yongzhao
    Ou, Weihua
    KNOWLEDGE-BASED SYSTEMS, 2019, 167 : 38 - 52
  • [36] A k-nearest neighbor based algorithm for multi-label classification
    Zhang, ML
    Zhou, ZH
    2005 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2005, : 718 - 721
  • [37] An Improved K-Nearest Neighbor Algorithm for Pattern Classification
    Sultana, Zinnia
    Ferdousi, Ashifatul
    Tasnim, Farzana
    Nahar, Lutfun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 760 - 767
  • [38] IKNN: Informative K-nearest neighbor pattern classification
    Song, Yan
    Huang, Jian
    Zhou, Ding
    Zha, Hongyuan
    Giles, C. Lee
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2007, PROCEEDINGS, 2007, 4702 : 248 - +
  • [39] Improving K-Nearest Neighbor Efficacy for FarsiText Classification
    Elahimanesh, Mohammad Hossein
    BehrouzMinaei-Bidgoli
    Malekinezhad, Hossein
    LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2012, : 1618 - 1621
  • [40] K-Nearest Neighbor Classification for Glass Identification Problem
    Aldayel, Mashael S.
    2012 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND INDUSTRIAL INFORMATICS (ICCSII), 2012,