Surface Microparticles in Liquid Helium. Quantum Archimedes’ Principle

被引:0
|
作者
A. M. Dyugaev
E. V. Lebedeva
机构
[1] Russian Academy of Sciences,Landau Institute for Theoretical Physics
[2] Russian Academy of Sciences,Institute of Solid State Physics
来源
JETP Letters | 2017年 / 106卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deviations from Archimedes’ principle for spherical molecular hydrogen particles with the radius R0 at the surface of 4He liquid helium have been investigated. The classical Archimedes’ principle holds if R0 is larger than the helium capillary length Lcap ≅ 500 μm. In this case, the elevation of a particle above the liquid is h+ ~ R0. At 30 μm < R0 < 500 μm, the buoyancy is suppressed by the surface tension and h+ ~ R30/L2cap. At R0 < 30 μm, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is h- ~ R5/3c/R2/30 if R0 > Rc. Here, Rc≅(ℏcρg)1/5≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_c} \cong {\left( {\frac{{\hbar c}}{{\rho g}}} \right)^{1/5}} \approx 1$$\end{document}, where ħ is Planck’s constant, c is the speed of light, g is the acceleration due to gravity, and ρ is the mass density of helium. For very small particles (R0 < Rc), the distance h_ to the surface of the liquid is independent of their size, h_ = Rc.
引用
收藏
页码:788 / 792
页数:4
相关论文
共 50 条
  • [41] Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling
    Dittmar, N.
    Haberstroh, Ch.
    Hesse, U.
    Krzyzowski, M.
    CRYOGENICS, 2016, 79 : 53 - 62
  • [42] SELF-CONSISTENT DEBYE-WALLER FACTORS OF THE ELCTRON SOLID ON LIQUID HELIUM.
    Namaizawa, H.
    Solar energy, 1980, 34 (07) : 607 - 610
  • [43] The theory of quantum liquid application to helium liquid
    Tisza, L
    JOURNAL DE PHYSIQUE ET LE RADIUM, 1940, 1 : 164 - 172
  • [44] Characterisation and optimisation of flexible transfer lines for liquid helium. Part I: Experimental results
    Dittmar, N.
    Haberstroh, Ch.
    Hesse, U.
    Krzyzowski, M.
    CRYOGENICS, 2016, 75 : 6 - 12
  • [45] INVESTIGATION OF THE IR SPECTRA OF CELLOBIOSE AND O-DEUTERATED CELLOBIOSE AT THE TEMPERATURE OF LIQUID HELIUM.
    Korolik, E.V.
    Ivanova, N.V.
    Kolosova, T.E.
    Zhbankov, R.G.
    Journal of applied spectroscopy, 1985, 42 (05) : 551 - 553
  • [46] Plasma coagulation of microparticles on cooling of glow discharge by liquid helium
    Asinovskii, EI
    Kirillin, AV
    Markovets, VV
    PHYSICS LETTERS A, 2006, 350 (1-2) : 126 - 128
  • [47] Motional quantum states of surface electrons on liquid helium in a tilted magnetic field
    Zadorozhko, A. A.
    Chen, J.
    Chepelianskii, A. D.
    Konstantinov, D.
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [48] Edge magnetoplasmons on a liquid helium surface and quantum transport in a high magnetic field
    Ito, S
    Shirahama, K
    Kono, K
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 339 - 340
  • [49] The surface tension of liquid helium
    Allen, JF
    Misener, AD
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 : 299 - 300
  • [50] Neutrons on a surface of liquid helium
    Grigoriev, P. D.
    Zimmer, O.
    Grigoriev, A. D.
    Ziman, T.
    PHYSICAL REVIEW C, 2016, 94 (02)