Surface Microparticles in Liquid Helium. Quantum Archimedes’ Principle

被引:0
|
作者
A. M. Dyugaev
E. V. Lebedeva
机构
[1] Russian Academy of Sciences,Landau Institute for Theoretical Physics
[2] Russian Academy of Sciences,Institute of Solid State Physics
来源
JETP Letters | 2017年 / 106卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deviations from Archimedes’ principle for spherical molecular hydrogen particles with the radius R0 at the surface of 4He liquid helium have been investigated. The classical Archimedes’ principle holds if R0 is larger than the helium capillary length Lcap ≅ 500 μm. In this case, the elevation of a particle above the liquid is h+ ~ R0. At 30 μm < R0 < 500 μm, the buoyancy is suppressed by the surface tension and h+ ~ R30/L2cap. At R0 < 30 μm, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is h- ~ R5/3c/R2/30 if R0 > Rc. Here, Rc≅(ℏcρg)1/5≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_c} \cong {\left( {\frac{{\hbar c}}{{\rho g}}} \right)^{1/5}} \approx 1$$\end{document}, where ħ is Planck’s constant, c is the speed of light, g is the acceleration due to gravity, and ρ is the mass density of helium. For very small particles (R0 < Rc), the distance h_ to the surface of the liquid is independent of their size, h_ = Rc.
引用
收藏
页码:788 / 792
页数:4
相关论文
共 50 条
  • [21] Friction Force Limits the Drift of Microparticles Along the Quantum Vortex in Liquid Helium
    Aleksey A. Skoblin
    Dmitry V. Zlenko
    Sergey V. Stovbun
    Journal of Low Temperature Physics, 2020, 200 : 91 - 101
  • [22] Producing very low temperatures due to compression of liquid helium.
    Meissner, W.
    ZEITSCHRIFT FUR PHYSIK, 1933, 81 (11-12): : 832 - 837
  • [23] Neutron scattering study of liquid helium. Analysis of new data
    Blagoveshchenskii, NM
    Puchkov, AV
    Skomorokhov, AN
    Bogoyavlenskii, IV
    Karnatsevich, LV
    LOW TEMPERATURE PHYSICS, 1997, 23 (5-6) : 374 - 378
  • [24] Further experiments with liquid helium. F. isotherms of monatomic gases etc. IX. Thermal properties helium.
    Onnes, HK
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1912, 14 : 678 - 684
  • [25] ADAPTER FOR REDUCING LOSSES DURING THE POURING OFF OF LIQUID HELIUM.
    Batrakov, B.P.
    Kravchenko, V.A.
    Instruments and Experimental Techniques (English Translation of Pribory I Tekhnika Eksperimenta), 1975, 18 (5 pt 2): : 1633 - 1634
  • [26] DISLOCATION STRUCTURE OF NICKEL AFTER ULTRASONIC DEFORMATION IN LIQUID HELIUM.
    Belostotskiy, V.F.
    Demkin, V.A.
    Petrov, Yu.N.
    Timofeyeva, M.A.
    Physics of Metals and Metallography, 1986, 62 (05): : 192 - 195
  • [27] EFFECT OF TESTING CONDITIONS ON SERRATION OF AUSTENITIC STEELS IN LIQUID HELIUM.
    Shibata, Koji
    Sakamoto, Hisaki
    Fujita, Kouzou
    Fujita, Toshio
    Transactions of the Iron and Steel Institute of Japan, 1987, 28 (02) : 136 - 142
  • [28] LIQUID HELIUM - QUANTUM LIQUID
    DRANSFEL.K
    NATURWISSENSCHAFTEN, 1971, 58 (04) : 183 - &
  • [29] CHARACTERISTICS OF THE DISLOCATION STRUCTURE OF LiF CRYSTALS DEFORMED IN CONTACT WITH LIQUID HELIUM.
    Klyavin, O.V.
    Chernov, Yu.M.
    Pravdina, N.N.
    Rykova, I.I.
    1978, 20 (10): : 1787 - 1790
  • [30] Characterization of Flexible Transfer Lines for Liquid Helium. New Experimental Results
    Dittmar, N.
    Haberstroh, Ch.
    Hesse, U.
    ADVANCES IN CRYOGENIC ENGINEERING, 2014, 1573 : 893 - 899