Energy spread minimization in a beam-driven plasma wakefield accelerator

被引:0
|
作者
R. Pompili
D. Alesini
M. P. Anania
M. Behtouei
M. Bellaveglia
A. Biagioni
F. G. Bisesto
M. Cesarini
E. Chiadroni
A. Cianchi
G. Costa
M. Croia
A. Del Dotto
D. Di Giovenale
M. Diomede
F. Dipace
M. Ferrario
A. Giribono
V. Lollo
L. Magnisi
M. Marongiu
A. Mostacci
L. Piersanti
G. Di Pirro
S. Romeo
A. R. Rossi
J. Scifo
V. Shpakov
C. Vaccarezza
F. Villa
A. Zigler
机构
[1] Laboratori Nazionali di Frascati,Racah Institute of Physics
[2] Sapienza University,undefined
[3] University of Rome Tor Vergata and INFN,undefined
[4] INFN Milano,undefined
[5] Hebrew University,undefined
来源
Nature Physics | 2021年 / 17卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances1,2. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bunch3–5, enabling the realization of laboratory-scale applications ranging from high-energy colliders6 to ultrabright light sources7. So far, several experiments have demonstrated large accelerations8–10 but the resulting beam quality, particularly the energy spread, is still far from state-of-the-art conventional accelerators. Here we show the results of a beam-driven plasma acceleration experiment where we used an electron bunch as a driver followed by an ultrashort witness bunch. By setting a positive energy chirp on the witness bunch, its longitudinal phase space is rotated during acceleration, resulting in an ultralow energy spread that is even lower than the spread at the plasma entrance. This result will significantly impact the optimization of the plasma acceleration process and its implementation in forthcoming compact machines for user-oriented applications.
引用
收藏
页码:499 / 503
页数:4
相关论文
共 50 条
  • [21] Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching
    Zhang, Zhijun
    Li, Wentao
    Liu, Jiansheng
    Wang, Wentao
    Yu, Changhai
    Tian, Ye
    Nakajima, Kazuhisa
    Deng, Aihua
    Qi, Rong
    Wang, Cheng
    Qin, Zhiyong
    Fang, Ming
    Liu, Jiaqi
    Xia, Changquan
    Li, Ruxin
    Xu, Zhizhan
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [22] The effects of ion motion in very intense beam-driven plasma wakefield accelerators
    Rosenzweig, JB
    Cook, AM
    Thompson, MC
    Yoder, R
    ADVANCED ACCELERATOR CONCEPTS, 2004, 737 : 907 - 913
  • [23] The effects of ion motion in very intense beam-driven plasma wakefield accelerators
    Rosenzweig, JB
    Cook, AM
    Thompson, MC
    Yoder, RB
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 2739 - 2741
  • [24] Electron beam characteristics of a laser-driven plasma wakefield accelerator
    Assamagan, KA
    Buck, WW
    Chen, SY
    Ent, R
    Green, RN
    Gueye, P
    Keppel, C
    Mourou, G
    Umstadter, D
    Wagner, R
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 438 (2-3): : 265 - 276
  • [25] Electron beam characteristics of a laser-driven plasma wakefield accelerator
    Assamagan, K.A.
    Buck, W.W.
    Chen, S.-Y.
    Ent, R.
    Green, R.N.
    Gueye, P.
    Keppel, C.
    Mourou, G.
    Umstadter, D.
    Wagner, R.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 438 (02): : 265 - 276
  • [26] Low-initial-energy muon acceleration in beam-driven plasma wakefield using a plasma density down-ramp
    Jiang, You-Ge
    Wang, Xiao-Nan
    Lan, Xiao-Fei
    Huang, Yong-Sheng
    PHYSICS OF PLASMAS, 2022, 29 (10)
  • [27] Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators
    de la Ossa, A. Martinez
    Hu, Z.
    Streeter, M. J. V.
    Mehrling, T. J.
    Kononenko, O.
    Sheeran, B.
    Osterhoff, J.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (09):
  • [28] Positron beam extraction from an electron-beam-driven plasma wakefield accelerator
    Fujii, H.
    Marsh, K. A.
    An, W.
    Corde, S.
    Hogan, M. J.
    Yakimenko, V
    Joshi, C.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (09):
  • [29] Hydrodynamic Model for Particle Beam-Driven Wakefield in Carbon Nanotubes
    Martin-Luna, P.
    Apsimon, O.
    Barbera-Ramos, M.
    Bonatto, A.
    Bontoiu, C.
    Xia, G.
    Resta-Lopez, J.
    IPAC23 PROCEEDINGS, 2024, 2687
  • [30] Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator
    Lindstrom, C. A.
    Garland, J. M.
    Schroeder, S.
    Boulton, L.
    Boyle, G.
    Chappell, J.
    D'Arcy, R.
    Gonzalez, P.
    Knetsch, A.
    Libov, V
    Loisch, G.
    de la Ossa, A. Martinez
    Niknejadi, P.
    Poder, K.
    Schaper, L.
    Schmidt, B.
    Sheeran, B.
    Wesch, S.
    Wood, J.
    Osterhoff, J.
    PHYSICAL REVIEW LETTERS, 2021, 126 (01)