Hydrodynamic Model for Particle Beam-Driven Wakefield in Carbon Nanotubes

被引:0
|
作者
Martin-Luna, P. [1 ]
Apsimon, O. [2 ,3 ]
Barbera-Ramos, M. [4 ]
Bonatto, A. [5 ]
Bontoiu, C. [3 ,6 ]
Xia, G. [2 ,3 ]
Resta-Lopez, J. [4 ]
机构
[1] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Paterna, Spain
[2] Univ Manchester, Manchester, Lancs, England
[3] Cockroft Inst, Warrington, Cheshire, England
[4] Univ Valencia, Inst Univ Ciencia Mat ICMUV, Paterna, Spain
[5] Univ Fed Ciencias Saude Porto Alegre, Porto Alegre, RS, Brazil
[6] Univ Liverpool, Liverpool, Merseyside, England
来源
IPAC23 PROCEEDINGS | 2024年 / 2687卷
关键词
D O I
10.1088/1742-6596/2687/4/042005
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The charged particles moving through a carbon nanotube (CNT) may be used to excite electromagnetic modes in the electron gas produced in the cylindrical graphene shell that makes up a nanotube wall. This effect has recently been proposed as a potential novel method of short-wavelength-high-gradient particle acceleration. In this contribution, the existing theory based on a linearized hydrodynamic model for a localized point-charge propagating in a single wall nanotube (SWNT) is reviewed. In this model, the electron gas is treated as a plasma with additional contributions to the fluid momentum equation from specific solid-state properties of the gas. The governing set of differential equations is formed by the continuity and momentum equations for the involved species. These equations are then coupled by Maxwell's equations. The differential equation system is solved applying a modified Fourier-Bessel transform. An analysis has been realized to determine the plasma modes able to excite a longitudinal electrical wakefield component in the SWNT to accelerate test charges. Numerical results are obtained showing the influence of the damping factor, the velocity of the driver, the nanotube radius, and the particle position on the excited wakefields. A discussion is presented on the suitability and possible limitations of using this method for modelling CNT-based particle acceleration.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Transformer ratio saturation in a beam-driven wakefield accelerator
    Farmer, J. P.
    Martorelli, R.
    Pukhov, A.
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [2] Energy spread minimization in a beam-driven plasma wakefield accelerator
    R. Pompili
    D. Alesini
    M. P. Anania
    M. Behtouei
    M. Bellaveglia
    A. Biagioni
    F. G. Bisesto
    M. Cesarini
    E. Chiadroni
    A. Cianchi
    G. Costa
    M. Croia
    A. Del Dotto
    D. Di Giovenale
    M. Diomede
    F. Dipace
    M. Ferrario
    A. Giribono
    V. Lollo
    L. Magnisi
    M. Marongiu
    A. Mostacci
    L. Piersanti
    G. Di Pirro
    S. Romeo
    A. R. Rossi
    J. Scifo
    V. Shpakov
    C. Vaccarezza
    F. Villa
    A. Zigler
    Nature Physics, 2021, 17 : 499 - 503
  • [3] Energy spread minimization in a beam-driven plasma wakefield accelerator
    Pompili, R.
    Alesini, D.
    Anania, M. P.
    Behtouei, M.
    Bellaveglia, M.
    Biagioni, A.
    Bisesto, F. G.
    Cesarini, M.
    Chiadroni, E.
    Cianchi, A.
    Costa, G.
    Croia, M.
    Del Dotto, A.
    Di Giovenale, D.
    Diomede, M.
    Dipace, F.
    Ferrario, M.
    Giribono, A.
    Lollo, V
    Magnisi, L.
    Marongiu, M.
    Mostacci, A.
    Piersanti, L.
    Di Pirro, G.
    Romeo, S.
    Rossi, A. R.
    Scifo, J.
    Shpakov, V
    Vaccarezza, C.
    Villa, F.
    Zigler, A.
    NATURE PHYSICS, 2021, 17 (04) : 499 - +
  • [4] First emittance measurement of the beam-driven plasma wakefield accelerated electron beam
    Shpakov, V.
    Anania, M. P.
    Behtouei, M.
    Bellaveglia, M.
    Biagioni, A.
    Cesarini, M.
    Chiadroni, E.
    Cianchi, A.
    Costa, G.
    Croia, M.
    Del Dotto, A.
    Diomede, M.
    Dipace, F.
    Ferrario, M.
    Galletti, M.
    Giribono, A.
    Liedl, A.
    Lollo, V.
    Magnisi, L.
    Mostacci, A.
    Di Pirro, G.
    Piersanti, L.
    Pompili, R.
    Romeo, S.
    Rossi, A. R.
    Scifo, J.
    Vaccarezza, C.
    Villa, F.
    Zigler, A.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (05)
  • [5] Modeling beam-driven and laser-driven plasma wakefield accelerators with XOOPIC
    Bruhwiler, DL
    Giacone, R
    Cary, JR
    Verboncoeur, JP
    Mardahl, P
    Esarey, E
    Leemans, W
    ADVANCED ACCELERATOR CONCEPTS, 2001, 569 : 591 - 604
  • [6] Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator
    Gessner, Spencer
    Adli, Erik
    Allen, James M.
    An, Weiming
    Clarke, Christine I.
    Clayton, Chris E.
    Corde, Sebastien
    Delahaye, J. P.
    Frederico, Joel
    Green, Selina Z.
    Hast, Carsten
    Hogan, Mark J.
    Joshi, Chan
    Lindstrom, Carl A.
    Lipkowitz, Nate
    Litos, Michael
    Lu, Wei
    Marsh, Kenneth A.
    Mori, Warren B.
    O'Shea, Brendan
    Vafaei-Najafabadi, Navid
    Walz, Dieter
    Yakimenko, Vitaly
    Yocky, Gerald
    NATURE COMMUNICATIONS, 2016, 7
  • [7] Beam-driven dielectric wakefield accelerating structure as a THz radiation source
    Cook, A. M.
    Badakov, H.
    England, R. J.
    Rosenzweig, J. B.
    Tikhoplav, R.
    Travish, G.
    Williams, O. B.
    Thompson, M. C.
    Kanareykin, A.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 2285 - +
  • [8] 9 GeV energy gain in a beam-driven plasma wakefield accelerator
    Litos, M.
    Adli, E.
    Allen, J. M.
    An, W.
    Clarke, C. I.
    Corde, S.
    Clayton, C. E.
    Frederico, J.
    Gessner, S. J.
    Green, S. Z.
    Hogan, M. J.
    Joshi, C.
    Lu, W.
    Marsh, K. A.
    Mori, W. B.
    Schmeltz, M.
    Vafaei-Najafabadi, N.
    Yakimenko, V.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (03)
  • [9] Wakefield-induced ionization injection in beam-driven plasma accelerators
    de la Ossa, A. Martinez
    Mehrling, T. J.
    Schaper, L.
    Streeter, M. J. V.
    Osterhoff, J.
    PHYSICS OF PLASMAS, 2015, 22 (09)
  • [10] Effects of ion motion in intense beam-driven plasma wakefield accelerators
    Rosenzweig, JB
    Cook, AM
    Scott, A
    Thompson, MC
    Yoder, RB
    PHYSICAL REVIEW LETTERS, 2005, 95 (19)