Linear quantile regression models for longitudinal experiments: An overview

被引:31
|
作者
Marino M.F. [1 ]
Farcomeni A. [2 ]
机构
[1] University of Perugia, Perugia
[2] Sapienza, University of Rome, Rome
关键词
Conditional models; Fixed effects; Generalized estimating equations; Longitudinal data; Marginal models; Quantile regression; Random effects;
D O I
10.1007/s40300-015-0072-5
中图分类号
学科分类号
摘要
We provide an overview of linear quantile regression models for continuous responses repeatedly measured over time. We distinguish between marginal approaches, that explicitly model the data association structure, and conditional approaches, that consider individual-specific parameters to describe dependence among data and overdispersion. General estimation schemes are discussed and available software options are listed. We also mention methods to deal with non-ignorable missing values, with spatially dependent observations and nonparametric and semiparametric models. The paper is concluded by an overview of open issues in longitudinal quantile regression. © 2015 Sapienza Università di Roma.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 50 条
  • [41] Varying-coefficient partially functional linear quantile regression models
    Ping Yu
    Jiang Du
    Zhongzhan Zhang
    Journal of the Korean Statistical Society, 2017, 46 : 462 - 475
  • [42] Quantile regression for linear models with autoregressive errors using EM algorithm
    Tian, Yuzhu
    Tang, Manlai
    Zang, Yanchao
    Tian, Maozai
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1605 - 1625
  • [43] Varying-coefficient partially functional linear quantile regression models
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 462 - 475
  • [44] Bayesian quantile regression for skew-normal linear mixed models
    Aghamohammadi, A.
    Meshkani, M. R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 10953 - 10972
  • [45] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [46] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    Computational Statistics, 2015, 30 : 569 - 592
  • [47] AN OVERVIEW OF LINEAR STRUCTURAL MODELS IN ERRORS IN VARIABLES REGRESSION
    Gillard, Jonathan
    REVSTAT-STATISTICAL JOURNAL, 2010, 8 (01) : 57 - 80
  • [48] Multistate quantile regression models
    Farcomeni, Alessio
    Geraci, Marco
    STATISTICS IN MEDICINE, 2020, 39 (01) : 45 - 56
  • [49] Quantile Association Regression Models
    Li, Ruosha
    Cheng, Yu
    Fine, Jason P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 230 - 242
  • [50] Gaussian copula based composite quantile regression in semivarying models with longitudinal data
    Wang, Kangning
    Jin, Haotian
    Sun, Xiaofei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (04) : 1110 - 1132