Linear quantile regression models for longitudinal experiments: An overview

被引:31
|
作者
Marino M.F. [1 ]
Farcomeni A. [2 ]
机构
[1] University of Perugia, Perugia
[2] Sapienza, University of Rome, Rome
关键词
Conditional models; Fixed effects; Generalized estimating equations; Longitudinal data; Marginal models; Quantile regression; Random effects;
D O I
10.1007/s40300-015-0072-5
中图分类号
学科分类号
摘要
We provide an overview of linear quantile regression models for continuous responses repeatedly measured over time. We distinguish between marginal approaches, that explicitly model the data association structure, and conditional approaches, that consider individual-specific parameters to describe dependence among data and overdispersion. General estimation schemes are discussed and available software options are listed. We also mention methods to deal with non-ignorable missing values, with spatially dependent observations and nonparametric and semiparametric models. The paper is concluded by an overview of open issues in longitudinal quantile regression. © 2015 Sapienza Università di Roma.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 50 条
  • [31] Local linear quantile regression
    Yu, KM
    Jones, MC
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 228 - 237
  • [32] A weighted linear quantile regression
    Huang, Mei Ling
    Xu, Xiaojian
    Tashnev, Dmitry
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2596 - 2618
  • [33] Weighted composite quantile regression for partially linear varying coefficient models
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (16) : 3987 - 4005
  • [34] Quantile regression for linear models with autoregressive errors using EM algorithm
    Yuzhu Tian
    Manlai Tang
    Yanchao Zang
    Maozai Tian
    Computational Statistics, 2018, 33 : 1605 - 1625
  • [35] Quantile regression in linear mixed models: a stochastic approximation EM approach
    Galarza, Christian E.
    Lachos, Victor H.
    Bandyopadhyay, Dipankar
    STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 471 - 482
  • [36] Quantile regression for partially linear varying coefficient spatial autoregressive models
    Dai, Xiaowen
    Li, Shaoyang
    Jin, Libin
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4396 - 4411
  • [37] Quantile regression estimates for a class of linear and partially linear errors-in-variables models
    He, XM
    Liang, H
    STATISTICA SINICA, 2000, 10 (01) : 129 - 140
  • [38] Bayesian composite quantile regression for linear mixed-effects models
    Tian, Yuzhu
    Lian, Heng
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7717 - 7731
  • [39] Smoothed quantile regression for partially functional linear models in high dimensions
    Wang, Zhihao
    Bai, Yongxin
    Haerdle, Wolfgang K.
    Tian, Maozai
    BIOMETRICAL JOURNAL, 2023, 65 (07)
  • [40] Bayesian Multiple Quantile Regression for Linear Models Using a Score Likelihood
    Wu, Teng
    Narisetty, Naveen N.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 875 - 903