Linear quantile regression models for longitudinal experiments: An overview

被引:31
|
作者
Marino M.F. [1 ]
Farcomeni A. [2 ]
机构
[1] University of Perugia, Perugia
[2] Sapienza, University of Rome, Rome
关键词
Conditional models; Fixed effects; Generalized estimating equations; Longitudinal data; Marginal models; Quantile regression; Random effects;
D O I
10.1007/s40300-015-0072-5
中图分类号
学科分类号
摘要
We provide an overview of linear quantile regression models for continuous responses repeatedly measured over time. We distinguish between marginal approaches, that explicitly model the data association structure, and conditional approaches, that consider individual-specific parameters to describe dependence among data and overdispersion. General estimation schemes are discussed and available software options are listed. We also mention methods to deal with non-ignorable missing values, with spatially dependent observations and nonparametric and semiparametric models. The paper is concluded by an overview of open issues in longitudinal quantile regression. © 2015 Sapienza Università di Roma.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 50 条
  • [1] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [2] Optimal subsampling for linear quantile regression models
    Fan, Yan
    Liu, Yukun
    Zhu, Lixing
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1039 - 1057
  • [3] Bayesian quantile regression for hierarchical linear models
    Yu, Yang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3451 - 3467
  • [4] Testing in linear composite quantile regression models
    Rong Jiang
    Wei-Min Qian
    Jing-Ru Li
    Computational Statistics, 2014, 29 : 1381 - 1402
  • [5] Testing in linear composite quantile regression models
    Jiang, Rong
    Qian, Wei-Min
    Li, Jing-Ru
    COMPUTATIONAL STATISTICS, 2014, 29 (05) : 1381 - 1402
  • [6] Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
    Geraci, Marco
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (13): : 1 - 29
  • [7] Empirical likelihood for quantile regression models with longitudinal data
    Wang, Huixia Judy
    Zhu, Zhongyi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1603 - 1615
  • [8] INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES
    Wang, Huixia Judy
    Fygenson, Mendel
    ANNALS OF STATISTICS, 2009, 37 (02): : 756 - 781
  • [9] Quantile regression estimation of partially linear additive models
    Hoshino, Tadao
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (03) : 509 - 536
  • [10] Estimation for the censored partially linear quantile regression models
    Du, Jiang
    Zhang, Zhongzhan
    Xu, Dengke
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2393 - 2408