Homoclinic orbits for an unbounded superquadratic

被引:0
|
作者
Jun Wang
Junxiang Xu
Fubao Zhang
Lei Wang
机构
[1] Southeast University,Department of Mathematics
关键词
58E50 (Variational problems in infinite-dimensional spaces, Applications); Unbounded Hamiltonian systems; Variational methods; (; ); -condition;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following nonperiodic diffusion systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{\begin{array}{ll} \partial_{t}u-\triangle_{x}u+b(t,x)\nabla_{x}u+V(x)u=G_{v} (t,x,u,v), \\ -\partial_{t}v-\triangle_{x}v-b(t,x)\nabla_{x}v+V(x)v=G_{u} (t,x,u,v), \end{array}\right. {\forall}(t,x)\in\mathbb{R} \times\mathbb{R}^{N}, $$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b\in C(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R}^{N}), G\in C^{1} (\mathbb{R}\times\mathbb{R}^{N}\times\mathbb{R}^{2m},\mathbb{R})}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z:=(u,v): \mathbb{R}\times\mathbb{R}^{N}\rightarrow\mathbb{R}^{m}\times\mathbb{R}^{m}}$$\end{document}. Suppose that the potential V is positive constant and G(t, x, z) is superquadratic in z as |z| → ∞. By applying a generalized linking theorem for strongly indefinite functionals, we obtain homoclinic solutions z satisfying z(t, x) → 0 as |(t, x)| → ∞.
引用
收藏
页码:411 / 435
页数:24
相关论文
共 50 条
  • [1] Homoclinic orbits for an unbounded superquadratic
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Wang, Lei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (04): : 411 - 435
  • [2] Homoclinic orbits of an unbounded superquadratic Hamiltonian system
    Clement, P.
    Felmer, P.
    Mitidieri, E.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 320 (12):
  • [3] HOMOCLINIC ORBITS OF AN UNBOUNDED SUPERQUADRATIC HAMILTONIAN SYSTEM
    CLEMENT, P
    FELMER, P
    MITIDIERI, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (12): : 1481 - 1484
  • [4] Erratum to: Homoclinic orbits for an unbounded superquadratic Hamiltonian systems
    Jun Wang
    Junxiang Xu
    Fubao Zhang
    Lei Wang
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 115 - 115
  • [5] Homoclinic orbits for an unbounded superquadratic Hamiltonian systems (vol 17, pg 411, 2010)
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Wang, Lei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (01): : 115 - 115
  • [6] HOMOCLINIC ORBITS OF NONPERIODIC SUPERQUADRATIC HAMILTONIAN SYSTEM
    Zhang, Jian
    Tang, Xianhua
    Zhang, Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 1855 - 1867
  • [7] On homoclinic orbits for a class of noncoercive superquadratic Hamiltonian systems
    Timoumi, Mohsen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5892 - 5901
  • [8] Existence of Homoclinic Orbits for Hamiltonian Systems with Superquadratic Potentials
    Ding, Jian
    Xu, Junxiang
    Zhang, Fubao
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [9] HOMOCLINIC ORBITS OF FIRST-ORDER SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Batkam, Cyril Joel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3353 - 3369
  • [10] Ground state homoclinic orbits of superquadratic damped vibration systems
    Chen, Guanwei
    Zhao, Xiaoming
    ADVANCES IN DIFFERENCE EQUATIONS, 2014, : 1 - 13