Homoclinic orbits for an unbounded superquadratic

被引:0
|
作者
Jun Wang
Junxiang Xu
Fubao Zhang
Lei Wang
机构
[1] Southeast University,Department of Mathematics
关键词
58E50 (Variational problems in infinite-dimensional spaces, Applications); Unbounded Hamiltonian systems; Variational methods; (; ); -condition;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following nonperiodic diffusion systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{\begin{array}{ll} \partial_{t}u-\triangle_{x}u+b(t,x)\nabla_{x}u+V(x)u=G_{v} (t,x,u,v), \\ -\partial_{t}v-\triangle_{x}v-b(t,x)\nabla_{x}v+V(x)v=G_{u} (t,x,u,v), \end{array}\right. {\forall}(t,x)\in\mathbb{R} \times\mathbb{R}^{N}, $$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b\in C(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R}^{N}), G\in C^{1} (\mathbb{R}\times\mathbb{R}^{N}\times\mathbb{R}^{2m},\mathbb{R})}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z:=(u,v): \mathbb{R}\times\mathbb{R}^{N}\rightarrow\mathbb{R}^{m}\times\mathbb{R}^{m}}$$\end{document}. Suppose that the potential V is positive constant and G(t, x, z) is superquadratic in z as |z| → ∞. By applying a generalized linking theorem for strongly indefinite functionals, we obtain homoclinic solutions z satisfying z(t, x) → 0 as |(t, x)| → ∞.
引用
收藏
页码:411 / 435
页数:24
相关论文
共 50 条