Existence of Homoclinic Orbits for Hamiltonian Systems with Superquadratic Potentials

被引:1
|
作者
Ding, Jian [1 ]
Xu, Junxiang [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATION; CALCULUS;
D O I
10.1155/2009/128624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns solutions for the Hamiltonian system: (z) over dot = partial derivative H-z(t, z). Here H(t, z) = (1/2)z . Lz + W(t, z), L is a 2Nx 2N symmetric matrix, and W is an element of C-1(R x R-2N, R). We consider the case that 0 is an element of sigma(c) (-(partial derivative (d/dt) + L)) and W satisfies some superquadratic condition different from the type of Ambrosetti-Rabinowitz. We study this problem by virtue of some weak linking theorem recently developed and prove the existence of homoclinic orbits. Copyright (C) 2009 Jian Ding et al.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Existence of Homoclinic Orbits of Superquadratic Second-Order Hamiltonian Systems
    Guo, Chengjun
    O'Regan, Donal
    Wang, Chengjiang
    Agarwal, Ravi P.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 27 - 41
  • [2] On the existence of periodic and homoclinic orbits for first order superquadratic Hamiltonian systems
    Daouas, Adel
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 1347 - 1364
  • [3] Existence of infinitely many homoclinic orbits for nonperiodic superquadratic Hamiltonian systems
    Wang, Jun
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4873 - 4883
  • [4] On the existence of periodic and homoclinic orbits for first order superquadratic Hamiltonian systems
    Adel Daouas
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1347 - 1364
  • [5] HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SUPERQUADRATIC OR ASYMPTOTICALLY QUADRATIC POTENTIALS
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 269 - 286
  • [6] THE EXISTENCE OF HOMOCLINIC ORBITS FOR A CLASS OF FIRST-ORDER SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Guo, Chengjun
    Agarwal, Ravi P.
    Wang, Chengjiang
    O'Regan, Donal
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2014, 61 : 83 - 102
  • [7] On homoclinic orbits for a class of noncoercive superquadratic Hamiltonian systems
    Timoumi, Mohsen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5892 - 5901
  • [8] Erratum to: Homoclinic orbits for an unbounded superquadratic Hamiltonian systems
    Jun Wang
    Junxiang Xu
    Fubao Zhang
    Lei Wang
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 115 - 115
  • [9] The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign
    Fei, GH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1996, 17 (04) : 403 - 410