Existence of Homoclinic Orbits for Hamiltonian Systems with Superquadratic Potentials

被引:1
|
作者
Ding, Jian [1 ]
Xu, Junxiang [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATION; CALCULUS;
D O I
10.1155/2009/128624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns solutions for the Hamiltonian system: (z) over dot = partial derivative H-z(t, z). Here H(t, z) = (1/2)z . Lz + W(t, z), L is a 2Nx 2N symmetric matrix, and W is an element of C-1(R x R-2N, R). We consider the case that 0 is an element of sigma(c) (-(partial derivative (d/dt) + L)) and W satisfies some superquadratic condition different from the type of Ambrosetti-Rabinowitz. We study this problem by virtue of some weak linking theorem recently developed and prove the existence of homoclinic orbits. Copyright (C) 2009 Jian Ding et al.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] MULTI-BUMP HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SUPERQUADRATIC POTENTIAL
    Alves, C. O.
    Carriao, P. C.
    Miyagaki, O. H.
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (03): : 859 - 877
  • [22] Periodic Orbits and Homoclinic Orbits of Second-order Hamiltonian Systems with Mild Superquadratic Growth
    Zhang, Xiaofei
    Liu, Chungen
    Zhou, Benxing
    FRONTIERS OF MATHEMATICS, 2025,
  • [23] The existence of homoclinic orbits in Hamiltonian inclusions
    Hu, JX
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (02) : 169 - 180
  • [24] Homoclinic orbits for an unbounded superquadratic Hamiltonian systems (vol 17, pg 411, 2010)
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Wang, Lei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (01): : 115 - 115
  • [25] Existence and multiplicity of homoclinic orbits for the second order Hamiltonian systems
    Wang, Jun
    Zhang, Fubao
    Xu, Junxiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 569 - 581
  • [26] Existence and concentration of homoclinic orbits for first order Hamiltonian systems
    Wang, Tianfang
    Zhang, Wen
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (01): : 121 - 146
  • [27] EXISTENCE OF INFINITELY MANY HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS
    SERE, E
    MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) : 27 - 42
  • [28] Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems
    Lin, Xiaoyan
    Tang, X. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 59 - 72
  • [29] Homoclinic orbits for first order Hamiltonian systems with convex potentials
    Xu, Xiangjin
    ADVANCED NONLINEAR STUDIES, 2006, 6 (03) : 399 - 410
  • [30] MULTIPLE HOMOCLINIC SOLUTIONS FOR SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Jiang, Wei
    Zhang, Qingye
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,