On the restricted k-Steiner tree problem

被引:0
|
作者
Prosenjit Bose
Anthony D’Angelo
Stephane Durocher
机构
[1] Carleton University,School of Computer Science
[2] Carleton University,undefined
[3] University of Manitoba,undefined
来源
关键词
Minimum ; -Steiner tree; Steiner point restrictions; Computational geometry; Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n points in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} and an input line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we present an algorithm that runs in optimal Θ(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n\log n)$$\end{document} time and Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n)$$\end{document} space to solve a restricted version of the 1-Steiner tree problem. Our algorithm returns a minimum-weight tree interconnecting P using at most one Steiner point s∈γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \gamma $$\end{document}, where edges are weighted by the Euclidean distance between their endpoints. We then extend the result to j input lines. Following this, we show how the algorithm of Brazil et al. in Algorithmica 71(1):66–86 that solves the k-Steiner tree problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} in O(n2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2k})$$\end{document} time can be adapted to our setting. For k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document}, restricting the (at most) k Steiner points to lie on an input line, the runtime becomes O(nk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{k})$$\end{document}. Next we show how the results of Brazil et al. in Algorithmica 71(1):66–86 allow us to maintain the same time and space bounds while extending to some non-Euclidean norms and different tree cost functions. Lastly, we extend the result to j input curves.
引用
收藏
页码:2893 / 2918
页数:25
相关论文
共 50 条
  • [31] The full Steiner tree problem
    Lu, CL
    Tang, CY
    Lee, RCT
    THEORETICAL COMPUTER SCIENCE, 2003, 306 (1-3) : 55 - 67
  • [32] The Bursty Steiner Tree Problem
    Sharma, Gokarna
    Busch, Costas
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2017, 28 (07) : 869 - 887
  • [33] Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing
    Danny Segev
    Gil Segev
    Algorithmica, 2010, 56 : 529 - 549
  • [34] Approximate k-steiner forests via the Lagrangian relaxation technique with internal preprocessing
    Segev, Danny
    Segev, Gil
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 600 - 611
  • [35] Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees
    Hajiaghayi, Mohammad Taghi
    Kortsarz, Guy
    Salavatipour, Mohammad R.
    ALGORITHMICA, 2009, 53 (01) : 89 - 103
  • [36] Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees
    Mohammad Taghi Hajiaghayi
    Guy Kortsarz
    Mohammad R. Salavatipour
    Algorithmica, 2009, 53 : 89 - 103
  • [37] Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing
    Segev, Danny
    Segev, Gil
    ALGORITHMICA, 2010, 56 (04) : 529 - 549
  • [38] A truthful (2-2/k) -approximation mechanism for the steiner tree problem with k terminals
    Gualà, L
    Proietti, G
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 390 - 400
  • [39] A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem
    Lehilton Lelis Chaves Pedrosa
    Hugo Kooki Kasuya Rosado
    Algorithmica, 2022, 84 : 3522 - 3558
  • [40] A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem
    Chaves Pedrosa, Lehilton Lelis
    Kasuya Rosado, Hugo Kooki
    ALGORITHMICA, 2022, 84 (12) : 3522 - 3558