On the restricted k-Steiner tree problem

被引:0
|
作者
Prosenjit Bose
Anthony D’Angelo
Stephane Durocher
机构
[1] Carleton University,School of Computer Science
[2] Carleton University,undefined
[3] University of Manitoba,undefined
来源
关键词
Minimum ; -Steiner tree; Steiner point restrictions; Computational geometry; Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n points in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} and an input line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we present an algorithm that runs in optimal Θ(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n\log n)$$\end{document} time and Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n)$$\end{document} space to solve a restricted version of the 1-Steiner tree problem. Our algorithm returns a minimum-weight tree interconnecting P using at most one Steiner point s∈γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \gamma $$\end{document}, where edges are weighted by the Euclidean distance between their endpoints. We then extend the result to j input lines. Following this, we show how the algorithm of Brazil et al. in Algorithmica 71(1):66–86 that solves the k-Steiner tree problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} in O(n2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2k})$$\end{document} time can be adapted to our setting. For k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document}, restricting the (at most) k Steiner points to lie on an input line, the runtime becomes O(nk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{k})$$\end{document}. Next we show how the results of Brazil et al. in Algorithmica 71(1):66–86 allow us to maintain the same time and space bounds while extending to some non-Euclidean norms and different tree cost functions. Lastly, we extend the result to j input curves.
引用
收藏
页码:2893 / 2918
页数:25
相关论文
共 50 条
  • [21] The Rainbow Steiner Tree Problem
    Ferone, Daniele
    Festa, Paola
    Guerriero, Francesca
    COMPUTERS & OPERATIONS RESEARCH, 2022, 139
  • [22] DYNAMIC STEINER TREE PROBLEM
    IMASE, M
    WAXMAN, BM
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (03) : 369 - 384
  • [23] On the clustered Steiner tree problem
    Wu, Bang Ye
    Lin, Chen-Wan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (02) : 370 - 386
  • [24] On the approximability of the Steiner tree problem
    Thimm, M
    THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) : 387 - 402
  • [25] A CONSTRAINED STEINER TREE PROBLEM
    ROSENWEIN, MB
    WONG, RT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 81 (02) : 430 - 439
  • [26] On the internal Steiner tree problem
    Hsieh, Sun-Yuan
    Gao, Huang-Ming
    Yang, Shih-Cheng
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 274 - +
  • [27] On the clustered Steiner tree problem
    Bang Ye Wu
    Chen-Wan Lin
    Journal of Combinatorial Optimization, 2015, 30 : 370 - 386
  • [28] On the Restricted Steiner Multi Cycle Problem
    Pereira, Vinicius de Novaes Guimaraes
    Felice, Mario Cesar San
    Hokama, Pedro Henrique Del Bianco
    Xavier, Eduardo Candido
    COMPUTERS & OPERATIONS RESEARCH, 2024, 169
  • [29] On the approximability of the Steiner tree problem
    Thimm, M
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 678 - 689
  • [30] On the terminal Steiner tree problem
    Lin, GH
    Xue, GL
    INFORMATION PROCESSING LETTERS, 2002, 84 (02) : 103 - 107