On the restricted k-Steiner tree problem

被引:0
|
作者
Prosenjit Bose
Anthony D’Angelo
Stephane Durocher
机构
[1] Carleton University,School of Computer Science
[2] Carleton University,undefined
[3] University of Manitoba,undefined
来源
关键词
Minimum ; -Steiner tree; Steiner point restrictions; Computational geometry; Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n points in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} and an input line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we present an algorithm that runs in optimal Θ(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n\log n)$$\end{document} time and Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n)$$\end{document} space to solve a restricted version of the 1-Steiner tree problem. Our algorithm returns a minimum-weight tree interconnecting P using at most one Steiner point s∈γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \gamma $$\end{document}, where edges are weighted by the Euclidean distance between their endpoints. We then extend the result to j input lines. Following this, we show how the algorithm of Brazil et al. in Algorithmica 71(1):66–86 that solves the k-Steiner tree problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} in O(n2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2k})$$\end{document} time can be adapted to our setting. For k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document}, restricting the (at most) k Steiner points to lie on an input line, the runtime becomes O(nk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{k})$$\end{document}. Next we show how the results of Brazil et al. in Algorithmica 71(1):66–86 allow us to maintain the same time and space bounds while extending to some non-Euclidean norms and different tree cost functions. Lastly, we extend the result to j input curves.
引用
收藏
页码:2893 / 2918
页数:25
相关论文
共 50 条
  • [1] On the restricted k-Steiner tree problem
    Bose, Prosenjit
    D'Angelo, Anthony
    Durocher, Stephane
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 2893 - 2918
  • [2] An exact algorithm for the Euclidean k-Steiner tree problem
    Brazil, Marcus
    Hendriksen, Michael
    Lee, Jae
    Payne, Michael S.
    Ras, Charl
    Thomas, Doreen
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 121
  • [3] Algorithms for the Prize-Collecting k-Steiner Tree Problem
    Lu Han
    Changjun Wang
    Dachuan Xu
    Dongmei Zhang
    TsinghuaScienceandTechnology, 2022, 27 (05) : 785 - 792
  • [4] An approximation algorithm for a bottleneck k-Steiner tree problem in the Euclidean plane
    Wang, LS
    Li, ZM
    INFORMATION PROCESSING LETTERS, 2002, 81 (03) : 151 - 156
  • [5] Generalised k-Steiner Tree Problems in Normed Planes
    Brazil, Marcus
    Ras, Charl J.
    Swanepoel, Konrad J.
    Thomas, Doreen A.
    ALGORITHMICA, 2015, 71 (01) : 66 - 86
  • [6] An approximation algorithm to the k-Steiner Forest problem
    Zhang, Peng
    Xia, Mingji
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (11) : 1093 - 1098
  • [7] An approximation algorithm to the k-steiner forest problem
    Zhang, Peng
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 728 - 737
  • [8] Generalised k-Steiner Tree Problems in Normed Planes
    Marcus Brazil
    Charl J. Ras
    Konrad J. Swanepoel
    Doreen A. Thomas
    Algorithmica, 2015, 71 : 66 - 86
  • [9] The k-Steiner ratio in graphs
    Borchers, A
    Du, DZ
    SIAM JOURNAL ON COMPUTING, 1997, 26 (03) : 857 - 869
  • [10] The bottleneck 2-connected k-Steiner network problem for k ≤ 2
    Brazil, M.
    Ras, C. J.
    Thomas, D. A.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1028 - 1038