Spectral collocation methods for the periodic solution of flexible multibody dynamics

被引:0
|
作者
Shilei Han
Olivier A. Bauchau
机构
[1] University of Maryland,Department of Aerospace Engineering
来源
Nonlinear Dynamics | 2018年 / 92卷
关键词
Flexible multibody dynamics; Periodic solution; Fourier spectral method; Dual entities; Interpolation of motion;
D O I
暂无
中图分类号
学科分类号
摘要
Many flexible multibody systems of practical interest exhibit a periodic response. This paper focuses on the implementation of the collocation version of the Fourier spectral method to determine periodic solutions of flexible multibody systems modeled via the finite element method. To facilitate the analysis and obtain governing equations presenting low-order nonlinearities, the motion formalism is adopted. Application of Fourier spectral methods requires global interpolation schemes that approximate the unknown fields over the entire period of response with exponential convergence characteristics. The classical spectral interpolation schemes were developed for linear fields and hence do not apply to the nonlinear configuration manifolds, such as SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SO}(3)$$\end{document} or SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SE}(3)$$\end{document}, that are used to describe the kinematics of multibody systems. Furthermore, the configuration and velocity fields are related through nonlinear kinematic compatibility equations. Clearly, special procedures must be developed to adapt the Fourier spectral approach to flexible multibody systems. The spectral interpolation of motion is investigated; interpolation schemes based on the polar decomposition are proposed. Assembly of the linearized governing equations at all the grid points leads to the governing equations of the spectral method. Numerical examples illustrate the performance of the proposed approach.
引用
收藏
页码:1599 / 1618
页数:19
相关论文
共 50 条
  • [31] Superelements modelling in flexible multibody dynamics
    Cardona, A
    MULTIBODY SYSTEM DYNAMICS, 2000, 4 (2-3) : 245 - 266
  • [32] DYNAMICS OF GENERAL FLEXIBLE MULTIBODY SYSTEMS
    HAN, RPS
    ZHAO, ZC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 30 (01) : 77 - 97
  • [33] MUFEM on flexible multibody system dynamics
    Wang, Cheng-guo
    Liang, Guo-ping
    Liu, Jin-zhao
    Gong Cheng Li Xue/Engineering Mechanics, 1999, 16 (02): : 22 - 28
  • [34] SOLUTION OF ATMOSPHERIC DIFFUSION PROBLEMS BY PSEUDO-SPECTRAL AND ORTHOGONAL COLLOCATION METHODS
    WENGLE, H
    VANDENBOSCH, B
    SEINFELD, JH
    ATMOSPHERIC ENVIRONMENT, 1978, 12 (05) : 1021 - 1032
  • [35] Computational methods in multibody dynamics
    Amirouche, Farid M.L.
    Cutchins, M.A.
    Applied Mechanics Reviews, 1992, 45 (12 pt 1)
  • [36] Integration methods for multibody dynamics
    McGrath, JF
    Rampalli, R
    Ryan, RR
    ASTRODYNAMICS 1995, 1996, 90 : 1603 - 1619
  • [37] Simulation and stability analysis of periodic flexible multibody systems
    Han, Shilei
    Bauchau, Olivier A.
    MULTIBODY SYSTEM DYNAMICS, 2020, 50 (04) : 381 - 413
  • [38] Simulation and stability analysis of periodic flexible multibody systems
    Shilei Han
    Olivier A. Bauchau
    Multibody System Dynamics, 2020, 50 : 381 - 413
  • [39] A NONRECURSIVE LAGRANGIAN SOLUTION OF THE NONCAUSAL INVERSE DYNAMICS OF FLEXIBLE MULTIBODY SYSTEMS - THE PLANAR CASE
    LEDESMA, R
    BAYO, E
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (16) : 2725 - 2741
  • [40] Spectral collocation methods for polymer brushes
    Chantawansri, Tanya L.
    Hur, Su-Mi
    Garcia-Cervera, Carlos J.
    Ceniceros, Hector D.
    Fredrickson, Glenn H.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (24):