Spectral collocation methods for the periodic solution of flexible multibody dynamics

被引:0
|
作者
Shilei Han
Olivier A. Bauchau
机构
[1] University of Maryland,Department of Aerospace Engineering
来源
Nonlinear Dynamics | 2018年 / 92卷
关键词
Flexible multibody dynamics; Periodic solution; Fourier spectral method; Dual entities; Interpolation of motion;
D O I
暂无
中图分类号
学科分类号
摘要
Many flexible multibody systems of practical interest exhibit a periodic response. This paper focuses on the implementation of the collocation version of the Fourier spectral method to determine periodic solutions of flexible multibody systems modeled via the finite element method. To facilitate the analysis and obtain governing equations presenting low-order nonlinearities, the motion formalism is adopted. Application of Fourier spectral methods requires global interpolation schemes that approximate the unknown fields over the entire period of response with exponential convergence characteristics. The classical spectral interpolation schemes were developed for linear fields and hence do not apply to the nonlinear configuration manifolds, such as SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SO}(3)$$\end{document} or SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SE}(3)$$\end{document}, that are used to describe the kinematics of multibody systems. Furthermore, the configuration and velocity fields are related through nonlinear kinematic compatibility equations. Clearly, special procedures must be developed to adapt the Fourier spectral approach to flexible multibody systems. The spectral interpolation of motion is investigated; interpolation schemes based on the polar decomposition are proposed. Assembly of the linearized governing equations at all the grid points leads to the governing equations of the spectral method. Numerical examples illustrate the performance of the proposed approach.
引用
收藏
页码:1599 / 1618
页数:19
相关论文
共 50 条
  • [21] Flexible Multibody Dynamics-Essential for Accurate Modeling in Multibody System Dynamics
    Sugiyama, Hiroyuki
    Gerstmayr, Johannes
    Mikkola, Aki
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (01):
  • [22] Linear dynamics of flexible multibody systems
    Chebbi, Jawhar
    Dubanchet, Vincent
    Gonzalez, Jose Alvaro Perez
    Alazard, Daniel
    MULTIBODY SYSTEM DYNAMICS, 2017, 41 (01) : 75 - 100
  • [23] A DAE approach to flexible multibody dynamics
    Betsch, P
    Steinmann, P
    MULTIBODY SYSTEM DYNAMICS, 2002, 8 (03) : 367 - 391
  • [24] Superelements Modelling in Flexible Multibody Dynamics
    Alberto Cardona
    Multibody System Dynamics, 2000, 4 : 245 - 266
  • [25] DYNAMICS OF FLEXIBLE MULTIBODY MECHANICAL SYSTEMS
    CYRIL, X
    ANGELES, J
    MISRA, A
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 1991, 15 (03) : 235 - 256
  • [26] A DAE Approach to Flexible Multibody Dynamics
    P. Betsch
    P. Steinmann
    Multibody System Dynamics, 2002, 8 (3) : 365 - 389
  • [27] TRANSLATIONAL JOINTS IN FLEXIBLE MULTIBODY DYNAMICS
    HWANG, RS
    HAUG, EJ
    MECHANICS OF STRUCTURES AND MACHINES, 1990, 18 (04): : 543 - 564
  • [28] Flexible joints in structural and multibody dynamics
    Bauchau, O. A.
    Han, S.
    MECHANICAL SCIENCES, 2013, 4 (01) : 65 - 77
  • [29] On Lagrange multipliers in flexible multibody dynamics
    Simeon, Bernd
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (50-51) : 6993 - 7005
  • [30] Numerical Solution of the Fokker-Planck Equation by Spectral Collocation and Finite-Element Methods for Stochastic Magnetization Dynamics
    Scalera, Valentino
    Ansalone, Patrizio
    Perna, Salvatore
    Serpico, Claudio
    d'Aquino, Massimiliano
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (02)