A study of interval optimization problems

被引:0
|
作者
Iván Aguirre-Cipe
Rubén López
Exequiel Mallea-Zepeda
Lautaro Vásquez
机构
[1] Universidad de Tarapacá,Departamento de Matemática
来源
Optimization Letters | 2021年 / 15卷
关键词
Asymptotic cones; Asymptotic functions; Coercivity properties; Coercive and noncoercive existence results; Set-type solutions; Interval optimization problems;
D O I
暂无
中图分类号
学科分类号
摘要
We study optimization problems with interval objective functions. We focus on set-type solution notions defined using the Kulisch–Miranker order between intervals. We obtain bounds for the asymptotic cones of level, colevel and solution sets that allow us to deduce coercivity properties and coercive existence results. Finally, we obtain various noncoercive existence results. Our results are easy to check since they are given in terms of the asymptotic cone of the constraint set and the asymptotic functions of the end point functions. This work extends, unifies and sheds new light on the theory of these problems.
引用
收藏
页码:859 / 877
页数:18
相关论文
共 50 条
  • [41] Global optimization by interval analysis: Application to problems with uncertain parameters
    Campos, Pedro G.
    Valdés-González, Héctor M.
    Informacion Tecnologica, 2006, 17 (05):
  • [42] An interval sequential linear programming for nonlinear robust optimization problems
    Tang, Jiachang
    Fu, Chunming
    Mi, Chengji
    Liu, Haibo
    APPLIED MATHEMATICAL MODELLING, 2022, 107 : 256 - 274
  • [43] A saddle point characterization of efficient solutions for interval optimization problems
    Ghosh, Debdulal
    Ghosh, Debdas
    Bhuiya, Sushil Kumar
    Patra, Lakshmi Kanta
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 58 (1-2) : 193 - 217
  • [44] An interval entropy method for equality constrained multiobjective optimization problems
    Hai-jun Wang
    De-xin Cao
    Su-bei Li
    Numerical Analysis and Applications, 2008, 1 (1)
  • [45] On interval-valued optimization problems with generalized invex functions
    Izhar Ahmad
    Anurag Jayswal
    Jonaki Banerjee
    Journal of Inequalities and Applications, 2013
  • [46] Reduced vertex set result for interval semidefinite optimization problems
    Calafiore, G.
    Dabbene, F.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (01) : 17 - 33
  • [47] An Interval Entropy Method for Equality Constrained Multiobjective Optimization Problems
    Wang, Hai-jun
    Cao, De-xin
    Li, Su-bei
    NUMERICAL ANALYSIS AND APPLICATIONS, 2008, 1 (01) : 25 - 33
  • [48] A direct solution framework for structural optimization problems with interval uncertainties
    Fu, Chunming
    Liu, Zhiwen
    Deng, Jian
    APPLIED MATHEMATICAL MODELLING, 2020, 80 : 384 - 393
  • [49] On interval-valued optimization problems with generalized invex functions
    Ahmad, Izhar
    Jayswal, Anurag
    Banerjee, Jonaki
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [50] A saddle point characterization of efficient solutions for interval optimization problems
    Debdulal Ghosh
    Debdas Ghosh
    Sushil Kumar Bhuiya
    Lakshmi Kanta Patra
    Journal of Applied Mathematics and Computing, 2018, 58 : 193 - 217