A study of interval optimization problems

被引:0
|
作者
Iván Aguirre-Cipe
Rubén López
Exequiel Mallea-Zepeda
Lautaro Vásquez
机构
[1] Universidad de Tarapacá,Departamento de Matemática
来源
Optimization Letters | 2021年 / 15卷
关键词
Asymptotic cones; Asymptotic functions; Coercivity properties; Coercive and noncoercive existence results; Set-type solutions; Interval optimization problems;
D O I
暂无
中图分类号
学科分类号
摘要
We study optimization problems with interval objective functions. We focus on set-type solution notions defined using the Kulisch–Miranker order between intervals. We obtain bounds for the asymptotic cones of level, colevel and solution sets that allow us to deduce coercivity properties and coercive existence results. Finally, we obtain various noncoercive existence results. Our results are easy to check since they are given in terms of the asymptotic cone of the constraint set and the asymptotic functions of the end point functions. This work extends, unifies and sheds new light on the theory of these problems.
引用
收藏
页码:859 / 877
页数:18
相关论文
共 50 条
  • [21] Interval-valued value function and its application in interval optimization problems
    Debdas Anshika
    Computational and Applied Mathematics, 2022, 41
  • [22] Interval-valued value function and its application in interval optimization problems
    Anshika
    Ghosh, Debdas
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [23] Deterministic interpretation for uncertain optimization problems with interval constraints
    School of Information and Electronic Engineering, China University of Mining and Technology, Xuzhou 221008, China
    Xitong Gongcheng Lilum yu Shijian, 2009, 2 (127-133):
  • [24] INTERVAL-ANALYSIS METHOD FOR GLOBAL OPTIMIZATION PROBLEMS
    JANSSON, C
    KNUPPEL, O
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T741 - T743
  • [25] An Optimization Approach for Nonlinear Programming Problems with Interval Coefficients
    Ma, Mei
    Li, Hecheng
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING (ICCMCEE 2015), 2015, 37 : 1031 - 1035
  • [26] OPTIMIZATION PROBLEMS WITH INTERVAL UNCERTAINTY: BRANCH AND BOUND METHOD
    Sergienko, I. V.
    Iemets, Ol. O.
    Yemets, Ol. O.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2013, 49 (05) : 673 - 683
  • [27] Interval data minmax regret network optimization problems
    Averbakh, I
    Lebedev, V
    DISCRETE APPLIED MATHEMATICS, 2004, 138 (03) : 289 - 301
  • [28] Two optimization problems in linear regression with interval data
    Hladik, M.
    Cerny, M.
    OPTIMIZATION, 2017, 66 (03) : 331 - 349
  • [29] Interval Linear Optimization Problems with Fuzzy Inequality Constraints
    Alolyan, Ibraheem
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION-MAKING (MCDM), 2014, : 124 - 128
  • [30] Optimization problems with interval uncertainty: Branch and bound method
    Sergienko I.V.
    Iemets O.O.
    Yemets O.O.
    Sergienko, I.V. (aik@public.icyb.kiev.ua), 1600, Springer Science and Business Media, LLC (49): : 673 - 683