A study of interval optimization problems

被引:0
|
作者
Iván Aguirre-Cipe
Rubén López
Exequiel Mallea-Zepeda
Lautaro Vásquez
机构
[1] Universidad de Tarapacá,Departamento de Matemática
来源
Optimization Letters | 2021年 / 15卷
关键词
Asymptotic cones; Asymptotic functions; Coercivity properties; Coercive and noncoercive existence results; Set-type solutions; Interval optimization problems;
D O I
暂无
中图分类号
学科分类号
摘要
We study optimization problems with interval objective functions. We focus on set-type solution notions defined using the Kulisch–Miranker order between intervals. We obtain bounds for the asymptotic cones of level, colevel and solution sets that allow us to deduce coercivity properties and coercive existence results. Finally, we obtain various noncoercive existence results. Our results are easy to check since they are given in terms of the asymptotic cone of the constraint set and the asymptotic functions of the end point functions. This work extends, unifies and sheds new light on the theory of these problems.
引用
收藏
页码:859 / 877
页数:18
相关论文
共 50 条
  • [1] A study of interval optimization problems
    Aguirre-Cipe, Ivan
    Lopez, Ruben
    Mallea-Zepeda, Exequiel
    Vasquez, Lautaro
    OPTIMIZATION LETTERS, 2021, 15 (03) : 859 - 877
  • [2] Interval variational inequalities and their relationship with interval optimization problems
    Kumar, Gourav
    Som, Tanmoy
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2717 - 2740
  • [3] Interval variational inequalities and their relationship with interval optimization problems
    Gourav Kumar
    Tanmoy Som
    The Journal of Analysis, 2023, 31 (4) : 2717 - 2740
  • [4] An interval particle swarm optimization method for interval nonlinear uncertain optimization problems
    Ta, Na
    Zheng, Zhewen
    Xie, Huichao
    ADVANCES IN MECHANICAL ENGINEERING, 2023, 15 (02)
  • [5] Global stability of interval optimization problems
    Lopez, Ruben
    OPTIMIZATION, 2020, 69 (11) : 2431 - 2451
  • [6] Discrete Optimization Problems with Interval Parameters
    Perepelitsa, V. A.
    Tebueva, F. B.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (05) : 795 - 804
  • [7] Discrete optimization problems with interval parameters
    V. A. Perepelitsa
    F. B. Tebueva
    Computational Mathematics and Mathematical Physics, 2010, 50 : 795 - 804
  • [8] INTERVAL OPTIMIZATION PROBLEMS ON HADAMARD MANIFOLDS
    Nguyen, Le Tram
    Chang, Yu-Lin
    Hu, Chu-Chin
    Chen, Jein-Shan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (11) : 2489 - 2511
  • [9] Optimization problems in dotted interval graphs
    Hermelin, Danny
    Mestre, Julian
    Rawitz, Dror
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 66 - 72
  • [10] Optimization Problems in Dotted Interval Graphs
    Hermelin, Danny
    Mestre, Julian
    Rawitz, Dror
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 46 - 56