Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

被引:0
|
作者
Eric Yue Ma
M. Reyes Calvo
Jing Wang
Biao Lian
Mathias Mühlbauer
Christoph Brüne
Yong-Tao Cui
Keji Lai
Worasom Kundhikanjana
Yongliang Yang
Matthias Baenninger
Markus König
Christopher Ames
Hartmut Buhmann
Philipp Leubner
Laurens W. Molenkamp
Shou-Cheng Zhang
David Goldhaber-Gordon
Michael A. Kelly
Zhi-Xun Shen
机构
[1] Geballe Laboratory for Advanced Materials,Department of Applied Physics
[2] Stanford University,Department of Physics
[3] 476 Lomita Mall,Department of Physics
[4] Stanford,undefined
[5] California 94305,undefined
[6] USA,undefined
[7] Stanford University,undefined
[8] 348 Via Pueblo Mall,undefined
[9] Stanford,undefined
[10] California 94305,undefined
[11] USA,undefined
[12] Stanford University,undefined
[13] 382 Via Pueblo Mall,undefined
[14] Stanford,undefined
[15] California 94305,undefined
[16] USA,undefined
[17] Physikalisches Institut (EP3),undefined
[18] Universität Würzburg,undefined
[19] University of Texas at Austin,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.
引用
收藏
相关论文
共 50 条
  • [31] Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry
    van, Langen, S.A.
    Brouwer, P.W.
    Beenakker, C.W.J.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (1-A pt A):
  • [32] Comment on "Critical behavior in disordered quantum systems modified by broken time-reversal symmetry"
    Janssen, M
    Shapiro, B
    Varga, I
    PHYSICAL REVIEW LETTERS, 1998, 81 (14) : 3048 - 3048
  • [33] Numerical study of spin quantum Hall transitions in superconductors with broken time-reversal symmetry
    Cui, QH
    Wan, X
    Yang, K
    PHYSICAL REVIEW B, 2004, 70 (09)
  • [34] Efficiency of three-terminal thermoelectric transport under broken time-reversal symmetry
    Balachandran, Vinitha
    Benenti, Giuliano
    Casati, Giulio
    PHYSICAL REVIEW B, 2013, 87 (16)
  • [35] Supercurrent rectification with time-reversal symmetry broken multiband superconductors
    Yerin, Yuriy
    Drechsler, Stefan-Ludwig
    Varlamov, A. A.
    Cuoco, Mario
    Giazotto, Francesco
    PHYSICAL REVIEW B, 2024, 110 (05)
  • [36] Consequences of Broken Time-Reversal Symmetry in Triplet Josephson Junctions
    Brydon, P. M. R.
    Iniotakis, C.
    Manske, Dirk
    Sigrist, M.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 5: SUPERCONDUCTIVITY, 2009, 150
  • [37] Correlated ground states with (spontaneously) broken time-reversal symmetry
    Farid, B
    SOLID STATE COMMUNICATIONS, 1997, 104 (04) : 227 - 231
  • [38] Densities of states, moments, and maximally broken time-reversal symmetry
    Haydock, Roger
    Nex, C. M. M.
    PHYSICAL REVIEW B, 2006, 74 (20):
  • [39] Odd Willis coupling induced by broken time-reversal symmetry
    Quan, Li
    Yves, Simon
    Peng, Yugui
    Esfahlani, Hussein
    Alu, Andrea
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] Dynamical invariants in systems with and without broken time-reversal symmetry
    Schuch, Dieter
    LATIN-AMERICAN SCHOOL OF PHYSICS XL ELAF: SYMMETRIES IN PHYSICS, 2011, 1334 : 291 - 340