Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

被引:0
|
作者
Eric Yue Ma
M. Reyes Calvo
Jing Wang
Biao Lian
Mathias Mühlbauer
Christoph Brüne
Yong-Tao Cui
Keji Lai
Worasom Kundhikanjana
Yongliang Yang
Matthias Baenninger
Markus König
Christopher Ames
Hartmut Buhmann
Philipp Leubner
Laurens W. Molenkamp
Shou-Cheng Zhang
David Goldhaber-Gordon
Michael A. Kelly
Zhi-Xun Shen
机构
[1] Geballe Laboratory for Advanced Materials,Department of Applied Physics
[2] Stanford University,Department of Physics
[3] 476 Lomita Mall,Department of Physics
[4] Stanford,undefined
[5] California 94305,undefined
[6] USA,undefined
[7] Stanford University,undefined
[8] 348 Via Pueblo Mall,undefined
[9] Stanford,undefined
[10] California 94305,undefined
[11] USA,undefined
[12] Stanford University,undefined
[13] 382 Via Pueblo Mall,undefined
[14] Stanford,undefined
[15] California 94305,undefined
[16] USA,undefined
[17] Physikalisches Institut (EP3),undefined
[18] Universität Würzburg,undefined
[19] University of Texas at Austin,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.
引用
收藏
相关论文
共 50 条
  • [21] Critical behavior in disordered quantum systems modified by broken time-reversal symmetry
    Hussein, MS
    Pato, MP
    PHYSICAL REVIEW LETTERS, 1998, 80 (05) : 1003 - 1006
  • [22] Onsager reciprocal relations with broken time-reversal symmetry
    Luo, Rongxiang
    Benenti, Giuliano
    Casati, Giulio
    Wang, Jiao
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [23] Excitons in carbon nanotubes with broken time-reversal symmetry
    Zaric, S
    Ostojic, GN
    Shaver, J
    Kono, J
    Portugall, O
    Frings, PH
    Rikken, GLJA
    Furis, M
    Crooker, SA
    Wei, X
    Moore, VC
    Hauge, RH
    Smalley, RE
    PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [24] EVIDENCE FOR BROKEN TIME-REVERSAL SYMMETRY IN CUPRATE SUPERCONDUCTORS
    WEBER, HJ
    WEITBRECHT, D
    BRACH, D
    SHELANKOV, AL
    KEITER, H
    WEBER, W
    WOLF, T
    GEERK, J
    LINKER, G
    ROTH, G
    SPLITTGERBERHUNNEKES, PC
    GUNTHERODT, G
    SOLID STATE COMMUNICATIONS, 1990, 76 (04) : 511 - 516
  • [25] Broken time-reversal symmetry and superconducting states in the cuprates
    Kaur, RP
    Agterberg, DF
    PHYSICAL REVIEW B, 2003, 68 (10):
  • [26] Photonic topological insulator with broken time-reversal symmetry
    He, Cheng
    Sun, Xiao-Chen
    Liu, Xiao-Ping
    Lu, Ming-Hui
    Chen, Yulin
    Feng, Liang
    Chen, Yan-Feng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (18) : 4924 - 4928
  • [27] Broken time-reversal symmetry scattering at the Anderson transition
    Alcazar-Lopez, A.
    Mendez-Bermudez, J. A.
    Varga, Imre
    ANNALEN DER PHYSIK, 2009, 18 (12) : 896 - 900
  • [28] Chaotic Rydberg atoms with broken time-reversal symmetry
    Sacha, K
    Zakrzewski, J
    Delande, D
    PHYSICAL REVIEW LETTERS, 1999, 83 (15) : 2922 - 2925
  • [29] Three-terminal thermoelectric transport under broken time-reversal symmetry
    Entin-Wohlman, O.
    Aharony, A.
    PHYSICAL REVIEW B, 2012, 85 (08)
  • [30] Fluctuating phase rigidity for a quantum chaotic system with partially broken time-reversal symmetry
    vanLangen, SA
    Brouwer, PW
    Beenakker, CWJ
    PHYSICAL REVIEW E, 1997, 55 (01): : R1 - R4