Topological complexity, minimality and systems of order two on torus

被引:0
|
作者
YiXiao Qiao
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Science China Mathematics | 2016年 / 59卷
关键词
topological complexity; minimality; 2-step nilsystem; 37B05;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamical system on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{T}^2$$\end{document} which is a group extension over an irrational rotation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{T}^1$$\end{document} is investigated. The criterion when the extension is minimal, a system of order 2 and when the maximal equicontinuous factor is the irrational rotation is given. The topological complexity of the extension is computed, and a negative answer to the latter part of an open question raised by Host et al. (2014) is obtained.
引用
收藏
页码:503 / 514
页数:11
相关论文
共 50 条