Topological complexity, minimality and systems of order two on torus

被引:0
|
作者
YiXiao Qiao
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Science China Mathematics | 2016年 / 59卷
关键词
topological complexity; minimality; 2-step nilsystem; 37B05;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamical system on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{T}^2$$\end{document} which is a group extension over an irrational rotation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{T}^1$$\end{document} is investigated. The criterion when the extension is minimal, a system of order 2 and when the maximal equicontinuous factor is the irrational rotation is given. The topological complexity of the extension is computed, and a negative answer to the latter part of an open question raised by Host et al. (2014) is obtained.
引用
收藏
页码:503 / 514
页数:11
相关论文
共 50 条
  • [31] Torus Knots and the Topological Vertex
    Hans Jockers
    Albrecht Klemm
    Masoud Soroush
    Letters in Mathematical Physics, 2014, 104 : 953 - 989
  • [32] Torus Knots and the Topological Vertex
    Jockers, Hans
    Klemm, Albrecht
    Soroush, Masoud
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (08) : 953 - 989
  • [33] Complexity and order in chemical and biological systems
    Yagil, G
    UNIFYING THEMES IN COMPLEX SYSTEMS, 2000, : 645 - 653
  • [34] Earth systems: Complexity, order and scale
    Slaymaker, O
    CANADIAN GEOGRAPHER-GEOGRAPHE CANADIEN, 2000, 44 (03): : 316 - 317
  • [35] Topological characterization of torus groups
    Chigogidze, A
    TOPOLOGY AND ITS APPLICATIONS, 1999, 94 (1-3) : 13 - 25
  • [36] New topological measures on the torus
    Knudsen, FF
    FUNDAMENTA MATHEMATICAE, 2005, 185 (03) : 287 - 293
  • [37] Solvability of a first order differential operator on the two-torus
    Bergamasco, A. P.
    Dattori da Silva, P. L.
    Meziani, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 166 - 180
  • [38] Complexity, fractal dimensions and topological entropy in dynamical systems
    Affraimovich, V
    Glebsky, L
    Chaotic Dynamics and Transport in Classical and Quantum Systems, 2005, 182 : 35 - +
  • [39] The complexity of topological conjugacy of pointed Cantor minimal systems
    Kaya, Burak
    ARCHIVE FOR MATHEMATICAL LOGIC, 2017, 56 (3-4) : 215 - 235
  • [40] CRITERION FOR MINIMALITY OF ALL SUBGROUPS OF A TOPOLOGICAL ABELIAN GROUP
    DICRANJAN, DN
    STOYANOV, LN
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1981, 34 (05): : 635 - 638