On the Sum of Narrow Orthogonally Additive Operators

被引:0
|
作者
N. M. Abasov
机构
[1] Moscow Aviation Institute (National Research University),
来源
Russian Mathematics | 2020年 / 64卷
关键词
vector lattice; orthogonally additive operator; narrow operator; laterally-to-norm continuous operator; -compact operator. ;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider orthogonally additive operators defined on a vector lattice E and taking value in a Banach space X. We say that an orthogonally additive operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T:E\to X$\end{document} is narrow if for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e\in E$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon>0$\end{document} there exists a decomposition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e=e_1\sqcup e_2$\end{document} of e into a sum of two disjoint fragments e1 and e2 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|Te_1-Te_2\|<\varepsilon$\end{document}. It is proved that the sum of two orthogonally additive operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S+T$\end{document} defined on a Dedekind complete, atomless vector lattice and taking value in a Banach space, where S is a narrow operator and T is a C-compact laterally-to-norm continuous operator, is a narrow operator, too.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [21] Some remarks on orthogonally additive operators
    Fotiy, Olena
    Kadets, Vladimir
    Popov, Mikhail
    POSITIVITY, 2023, 27 (04)
  • [22] Banach lattices of orthogonally additive operators
    Popov, Mikhail
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [23] Order Continuity of Orthogonally Additive Operators
    O. Fotiy
    I. Krasikova
    M. Pliev
    M. Popov
    Results in Mathematics, 2022, 77
  • [24] ON BAND PRESERVING ORTHOGONALLY ADDITIVE OPERATORS
    Abasov, N. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 495 - 510
  • [25] On the sum of a narrow and a compact operators
    Mykhaylyuk, Volodymyr
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5912 - 5920
  • [26] When is a Monomial in Linear Operators Orthogonally Additive
    Z. A. Kusraeva
    Lobachevskii Journal of Mathematics, 2024, 45 (12) : 6133 - 6138
  • [27] Orthogonally additive operators on complex vector lattices
    Pliev, Marat
    Sukochev, Fedor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (02)
  • [28] On Orthogonally Additive Operators in Köthe–Bochner Spaces
    Elena Basaeva
    Ruslan Kulaev
    Marat Pliev
    Results in Mathematics, 2021, 76
  • [29] Orthogonally additive polynomials on the algebras of approximable operators
    Alaminos, J.
    Godoy, M. L. C.
    Villena, A. R.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (09): : 1922 - 1936
  • [30] On C-compact orthogonally additive operators
    Pliev, Marat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)