On Orthogonally Additive Operators in Köthe–Bochner Spaces

被引:0
|
作者
Elena Basaeva
Ruslan Kulaev
Marat Pliev
机构
[1] Russian Academy of Sciences,Southern Mathematical Institute
[2] North-Ossetian State University,undefined
来源
Results in Mathematics | 2021年 / 76卷
关键词
Orthogonally additive operator; dominated operator; exact dominant; -compact operator; narrow operator; Köthe–Bochner space; lattice-normed space; banach lattice; Primary 47H30; Secondary 46A40;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we consider some classes of orthogonally additive operators in Köthe–Bochner spaces in the setting of the theory of lattice-normed spaces and dominated operators. The our first main result asserts that the C-compactness of a dominated orthogonally additive operator S:E(X)→F(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:E(X)\rightarrow F(Y)$$\end{document} implies the C-compactness of its exact dominant ||S||:E→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\!|S|\!|:E\rightarrow F$$\end{document}. Then we show that a dominated orthogonally additive operator S:E(X)→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:E(X)\rightarrow F$$\end{document} from a Köthe–Bochner space to a Banach lattice F with an order continuous norm is narrow if and only if its exact dominant ||S||:E→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\!|S|\!|:E\rightarrow F$$\end{document} is. Finally we prove that every laterally-to-norm continuous dominated orthogonally additive operator from E(X) to a sequence Banach lattice F is narrow.
引用
收藏
相关论文
共 50 条
  • [1] The lateral order on Köthe-Bochner spaces and orthogonally additive operators
    Pliev, Marat
    Abasov, Nariman
    Dzhusoeva, Nonna
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (03)
  • [2] On Orthogonally Additive Operators in Kothe-Bochner Spaces
    Basaeva, Elena
    Kulaev, Ruslan
    Pliev, Marat
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [3] The lateral order on Riesz spaces and orthogonally additive operators
    Volodymyr Mykhaylyuk
    Marat Pliev
    Mikhail Popov
    Positivity, 2021, 25 : 291 - 327
  • [4] The lateral order on Riesz spaces and orthogonally additive operators
    Mykhaylyuk, Volodymyr
    Pliev, Marat
    Popov, Mikhail
    POSITIVITY, 2021, 25 (02) : 291 - 327
  • [5] On Orthogonally Additive Operators in Lattice-Normed Spaces
    N. A. Dzhusoeva
    S. Yu. Itarova
    Mathematical Notes, 2023, 113 : 59 - 71
  • [6] On Orthogonally Additive Operators in Lattice-Normed Spaces
    Dzhusoeva, N. A.
    Itarova, S. Yu.
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 59 - 71
  • [7] On orthogonally additive band operators and orthogonally additive disjointness preserving operators
    Turan, Bahri
    Tulu, Demet
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1258 - 1266
  • [8] Diffuse orthogonally additive operatorsDiffuse orthogonally additive operators
    Abasov, N. M.
    Dzhusoeva, N. A.
    Pliev, M. A.
    SBORNIK MATHEMATICS, 2024, 215 (01) : 1 - 27
  • [9] Narrow orthogonally additive operators in lattice-normed spaces
    M. A. Pliev
    X. Fang
    Siberian Mathematical Journal, 2017, 58 : 134 - 141
  • [10] Maximal Factorization of Operators Acting in Köthe–Bochner Spaces
    J. M. Calabuig
    M. Fernández-Unzueta
    F. Galaz-Fontes
    E. A. Sánchez-Pérez
    The Journal of Geometric Analysis, 2021, 31 : 560 - 578