On Orthogonally Additive Operators in Köthe–Bochner Spaces

被引:0
|
作者
Elena Basaeva
Ruslan Kulaev
Marat Pliev
机构
[1] Russian Academy of Sciences,Southern Mathematical Institute
[2] North-Ossetian State University,undefined
来源
Results in Mathematics | 2021年 / 76卷
关键词
Orthogonally additive operator; dominated operator; exact dominant; -compact operator; narrow operator; Köthe–Bochner space; lattice-normed space; banach lattice; Primary 47H30; Secondary 46A40;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we consider some classes of orthogonally additive operators in Köthe–Bochner spaces in the setting of the theory of lattice-normed spaces and dominated operators. The our first main result asserts that the C-compactness of a dominated orthogonally additive operator S:E(X)→F(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:E(X)\rightarrow F(Y)$$\end{document} implies the C-compactness of its exact dominant ||S||:E→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\!|S|\!|:E\rightarrow F$$\end{document}. Then we show that a dominated orthogonally additive operator S:E(X)→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:E(X)\rightarrow F$$\end{document} from a Köthe–Bochner space to a Banach lattice F with an order continuous norm is narrow if and only if its exact dominant ||S||:E→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\!|S|\!|:E\rightarrow F$$\end{document} is. Finally we prove that every laterally-to-norm continuous dominated orthogonally additive operator from E(X) to a sequence Banach lattice F is narrow.
引用
收藏
相关论文
共 50 条
  • [21] Orthogonally additive majorized operators
    Kusraev, AG
    Pliev, MA
    DOKLADY MATHEMATICS, 2000, 61 (03) : 361 - 363
  • [22] On Compact Orthogonally Additive Operators
    Pliev, M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (05) : 989 - 995
  • [23] The Kalton and Rosenthal type decomposition of operators in K?the-Bochner spaces
    Pliev, Marat
    Sukochev, Fedor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
  • [24] Order Continuity of Orthogonally Additive Operators
    Fotiy, O.
    Krasikova, I
    Pliev, M.
    Popov, M.
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [25] Some remarks on orthogonally additive operators
    Olena Fotiy
    Vladimir Kadets
    Mikhail Popov
    Positivity, 2023, 27
  • [26] On the Sum of Narrow Orthogonally Additive Operators
    N. M. Abasov
    Russian Mathematics, 2020, 64 : 1 - 6
  • [27] LATERAL CONTINUITY AND ORTHOGONALLY ADDITIVE OPERATORS
    Gumenchuk, A., I
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (01) : 49 - 56
  • [28] Extension and Restriction of Orthogonally Additive Operators
    Tulu, D.
    Turan, B.
    SIBERIAN MATHEMATICAL JOURNAL, 2025, 66 (01) : 199 - 206
  • [29] Some remarks on orthogonally additive operators
    Fotiy, Olena
    Kadets, Vladimir
    Popov, Mikhail
    POSITIVITY, 2023, 27 (04)
  • [30] Banach lattices of orthogonally additive operators
    Popov, Mikhail
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)