共 50 条
On Orthogonally Additive Operators in Köthe–Bochner Spaces
被引:0
|作者:
Elena Basaeva
Ruslan Kulaev
Marat Pliev
机构:
[1] Russian Academy of Sciences,Southern Mathematical Institute
[2] North-Ossetian State University,undefined
来源:
关键词:
Orthogonally additive operator;
dominated operator;
exact dominant;
-compact operator;
narrow operator;
Köthe–Bochner space;
lattice-normed space;
banach lattice;
Primary 47H30;
Secondary 46A40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this article we consider some classes of orthogonally additive operators in Köthe–Bochner spaces in the setting of the theory of lattice-normed spaces and dominated operators. The our first main result asserts that the C-compactness of a dominated orthogonally additive operator S:E(X)→F(Y)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S:E(X)\rightarrow F(Y)$$\end{document} implies the C-compactness of its exact dominant ||S||:E→F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|\!|S|\!|:E\rightarrow F$$\end{document}. Then we show that a dominated orthogonally additive operator S:E(X)→F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S:E(X)\rightarrow F$$\end{document} from a Köthe–Bochner space to a Banach lattice F with an order continuous norm is narrow if and only if its exact dominant ||S||:E→F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|\!|S|\!|:E\rightarrow F$$\end{document} is. Finally we prove that every laterally-to-norm continuous dominated orthogonally additive operator from E(X) to a sequence Banach lattice F is narrow.
引用
收藏
相关论文