On Dirichlet Type Problems of Polynomial Dirac Equations with Boundary Conditions

被引:0
|
作者
Denis Constales
Dennis Grob
Rolf Sören Kraußhar
机构
[1] Ghent University,Department of Mathematical Analysis
[2] Lehrstuhl A für Mathematik,Erziehungswissenschaftliche Fakultät, Mathematik und Ihre Didaktik
[3] RWTH Aachen,undefined
[4] Universität Erfurt,undefined
来源
Results in Mathematics | 2013年 / 64卷
关键词
30 G 35; 32 A 25; 31 B 20; Polynomial Dirac equations; Dirichlet problems; reproducing kernels; Bergman and Hardy spaces; annular domains; Clifford analysis; Harmonic analysis; Maxwell equations; Helmholtz type equations; Klein–Gordon equation;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}_{\bf x} := \sum_{i=1}^n \frac{\partial}{\partial x_i} e_i}$$\end{document} be the Euclidean Dirac operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} and let P(X) = amXm + . . . + a1X +  a0 be a polynomial with real coefficients. Differential equations of the form P(Dx)u(x) = 0 are called homogeneous polynomial Dirac equations with real coefficients. In this paper we treat Dirichlet type problems of the a slightly less general form P(Dx)u(x) = f(x) (where the roots are exclusively real) with prescribed boundary conditions that avoid blow-ups inside the domain. We set up analytic representation formulas for the solutions in terms of hypercomplex integral operators and give exact formulas for the integral kernels in the particular cases dealing with spherical and concentric annular domains. The Maxwell and the Klein–Gordon equation are included as special subcases in this context.
引用
收藏
页码:193 / 213
页数:20
相关论文
共 50 条
  • [41] Biharmonic Equations Under Dirichlet Boundary Conditions with Supercritical Growth
    Ben Omrane, Hanen
    Ghedamsi, Mouna
    Khenissy, Saima
    ADVANCED NONLINEAR STUDIES, 2016, 16 (02) : 175 - 184
  • [42] Variational Approach to Impulsive Differential Equations with Dirichlet Boundary Conditions
    Chen, Huiwen
    Li, Jianli
    BOUNDARY VALUE PROBLEMS, 2010,
  • [43] Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions
    Grunau, HC
    Sweers, G
    MATHEMATISCHE ANNALEN, 1997, 307 (04) : 589 - 626
  • [44] NONLOCAL BIHARMONIC EVOLUTION EQUATIONS WITH DIRICHLET AND NAVIER BOUNDARY CONDITIONS
    Shi, Kehan
    Wen, Ying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 560 - 579
  • [45] Nonlinear differential equations with perturbed Dirichlet integral boundary conditions
    Alberto Cabada
    Javier Iglesias
    Boundary Value Problems, 2021
  • [46] Estimates for viscosity solutions of parabolic equations with Dirichlet boundary conditions
    Gripenberg, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) : 3651 - 3660
  • [47] Dirichlet Boundary Conditions for Degenerate and Singular Nonlinear Parabolic Equations
    Punzo, Fabio
    Strani, Marta
    POTENTIAL ANALYSIS, 2017, 47 (02) : 151 - 168
  • [48] Nonlinear differential equations with perturbed Dirichlet integral boundary conditions
    Cabada, Alberto
    Iglesias, Javier
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [49] Reproducing kernel functions of solutions to polynomial Dirac equations in the annulus of the unit ball in Rn and applications to boundary value problems
    Constales, Denis
    Grob, Dennis
    Krausshar, Rolf Soeren
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 281 - 293
  • [50] Local Dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems
    Mossaiby, Farshid
    Shojaei, Arman
    Boroomand, Bijan
    Zaccariotto, Mirco
    Galvanetto, Ugo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 362