On Dirichlet Type Problems of Polynomial Dirac Equations with Boundary Conditions

被引:0
|
作者
Denis Constales
Dennis Grob
Rolf Sören Kraußhar
机构
[1] Ghent University,Department of Mathematical Analysis
[2] Lehrstuhl A für Mathematik,Erziehungswissenschaftliche Fakultät, Mathematik und Ihre Didaktik
[3] RWTH Aachen,undefined
[4] Universität Erfurt,undefined
来源
Results in Mathematics | 2013年 / 64卷
关键词
30 G 35; 32 A 25; 31 B 20; Polynomial Dirac equations; Dirichlet problems; reproducing kernels; Bergman and Hardy spaces; annular domains; Clifford analysis; Harmonic analysis; Maxwell equations; Helmholtz type equations; Klein–Gordon equation;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}_{\bf x} := \sum_{i=1}^n \frac{\partial}{\partial x_i} e_i}$$\end{document} be the Euclidean Dirac operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} and let P(X) = amXm + . . . + a1X +  a0 be a polynomial with real coefficients. Differential equations of the form P(Dx)u(x) = 0 are called homogeneous polynomial Dirac equations with real coefficients. In this paper we treat Dirichlet type problems of the a slightly less general form P(Dx)u(x) = f(x) (where the roots are exclusively real) with prescribed boundary conditions that avoid blow-ups inside the domain. We set up analytic representation formulas for the solutions in terms of hypercomplex integral operators and give exact formulas for the integral kernels in the particular cases dealing with spherical and concentric annular domains. The Maxwell and the Klein–Gordon equation are included as special subcases in this context.
引用
收藏
页码:193 / 213
页数:20
相关论文
共 50 条
  • [21] NONLOCAL PROBLEMS WITH LOCAL DIRICHLET AND NEUMANN BOUNDARY CONDITIONS
    Aksoylu, Burak
    Celiker, Fatih
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2017, 12 (04) : 425 - 437
  • [22] Willmore obstacle problems under Dirichlet boundary conditions
    Grunau, Hans-Christoph
    Okabe, Shinya
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (03) : 1415 - 1462
  • [23] Consistent Dirichlet boundary conditions for numerical solution of moving boundary problems
    Hubbard, M. E.
    Baines, M. J.
    Jimack, P. K.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (06) : 1337 - 1353
  • [24] Cauchy problem for Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type
    Cannarsa, P
    Tessitore, ME
    CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 174 : 31 - 42
  • [25] THE SCREEN TYPE DIRICHLET BOUNDARY VALUE PROBLEMS FOR ANISOTROPIC PSEUDO-MAXWELL'S EQUATIONS
    Chkadua, O.
    Duduchava, R.
    Kapanadze, D.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2015, 66 : 33 - 43
  • [26] On Parabolic Equations with Mixed Dirichlet–Robin Type Boundary Conditions in a Non-rectangular Domain
    Arezki Kheloufi
    Mediterranean Journal of Mathematics, 2016, 13 : 1787 - 1805
  • [27] COMPACT FINITE-DIFFERENCE SCHEME FOR SOME SOBOLEV TYPE EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS
    Salian, Lavanya V.
    Rathan, Samala
    Kumar, Rakesh
    arXiv,
  • [28] Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions
    Xie, Jiaquan
    Huang, Qingxue
    Zhao, Fuqiang
    Gui, Hailian
    BOUNDARY VALUE PROBLEMS, 2017,
  • [29] Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions
    Jiaquan Xie
    Qingxue Huang
    Fuqiang Zhao
    Hailian Gui
    Boundary Value Problems, 2017
  • [30] Dirichlet and Neumann Boundary Value Problems for Dunkl Polyharmonic Equations
    Yuan, Hongfen
    Karachik, Valery
    MATHEMATICS, 2023, 11 (09)