Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo–Fabrizio fractional derivative

被引:0
|
作者
Haili Qiao
Zhengguang Liu
Aijie Cheng
机构
[1] Shandong University,School of Mathematics
[2] Shandong Normal University,School of Mathematics and Statistics
关键词
Distributed-order; Caputo–Fabrizio derivatives; Compact finite difference; Stability and convergence; Numerical experiments;
D O I
暂无
中图分类号
学科分类号
摘要
We consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grünwald formula. We show that these two schemes are unconditionally stable with convergence rates O(τ2+h2+Δα2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2}+h^{2}+ \Delta \alpha ^{2})$\end{document} and O(τ2+h4+Δα4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2}+h^{4}+\Delta \alpha ^{4})$\end{document} in discrete L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}, respectively, where Δα, h, and τ are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.
引用
收藏
相关论文
共 50 条
  • [31] A High-Order Scheme for Fractional Ordinary Differential Equations with the Caputo-Fabrizio Derivative
    Cao, Junying
    Wang, Ziqiang
    Xu, Chuanju
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (02) : 179 - 199
  • [32] A COMPACT FINITE DIFFERENCE SCHEME FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS WITH TIME DISTRIBUTED-ORDER DERIVATIVE
    Feng, Qinghua
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 79 - 90
  • [33] Analysis of Numerical Method for Diffusion Equation with Time-Fractional Caputo-Fabrizio Derivative
    Wang, Hanxiao
    Zhang, Xindong
    Luo, Ziyang
    Liu, Juan
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [34] Fractional diffusion equation with distributed-order material derivative. Stochastic foundations
    Magdziarz, M.
    Teuerle, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (18)
  • [35] FAST SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR TIME DISTRIBUTED-ORDER AND RIESZ SPACE FRACTIONAL DIFFUSION EQUATIONS
    Jian, Huanyan
    Huang, Tingzhu
    Zhao, Xile
    Zhao, Yongliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (04): : 1359 - 1392
  • [36] A New Result for Fractional Differential Equation With Nonlocal Initial Value Using Caputo-Fabrizio Derivative
    Mokhtary, Z.
    Ghaemi, M. B.
    Salahshour, S.
    FILOMAT, 2022, 36 (09) : 2881 - 2890
  • [37] A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative
    Baleanu, Dumitru
    Mohammadi, Hakimeh
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative
    Zheng, Xiangcheng
    Wang, Hong
    Fu, Hongfei
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [39] Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative
    Zheng, Xiangcheng
    Wang, Hong
    Fu, Hongfei
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [40] A novel finite element method for the distributed-order time fractional Cable equation in two dimensions
    Gao, Xinghua
    Liu, Fawang
    Li, Hong
    Liu, Yang
    Turner, Ian
    Yin, Baoli
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 923 - 939