Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo–Fabrizio fractional derivative

被引:0
|
作者
Haili Qiao
Zhengguang Liu
Aijie Cheng
机构
[1] Shandong University,School of Mathematics
[2] Shandong Normal University,School of Mathematics and Statistics
关键词
Distributed-order; Caputo–Fabrizio derivatives; Compact finite difference; Stability and convergence; Numerical experiments;
D O I
暂无
中图分类号
学科分类号
摘要
We consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grünwald formula. We show that these two schemes are unconditionally stable with convergence rates O(τ2+h2+Δα2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2}+h^{2}+ \Delta \alpha ^{2})$\end{document} and O(τ2+h4+Δα4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2}+h^{4}+\Delta \alpha ^{4})$\end{document} in discrete L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}, respectively, where Δα, h, and τ are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.
引用
收藏
相关论文
共 50 条
  • [21] Finite difference/spectral methods for the two-dimensional distributed-order time-fractional cable equation
    Zheng, Rumeng
    Liu, Fawang
    Jiang, Xiaoyun
    Turner, Ian W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1523 - 1537
  • [23] Some high-order difference schemes for the distributed-order differential equations
    Gao, Guang-hua
    Sun, Hai-wei
    Sun, Zhi-zhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 337 - 359
  • [24] Stable Difference Schemes for the Fractional Schrodinger Differential Equation
    Hicdurmaz, Betul
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 574 - 577
  • [25] Finite difference methods for nonlinear fractional differential equation with ψ-Caputo derivative
    Li, Changpin
    N'Gbo, N'Gbo
    Su, Fang
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 460
  • [26] Unconditionally optimal time two-mesh mixed finite element algorithm for a nonlinear fourth-order distributed-order time fractional diffusion equation
    Wen, Cao
    Wang, Jinfeng
    Liu, Yang
    Li, Hong
    Fang, Zhichao
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 460
  • [27] A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative
    Dumitru Baleanu
    Hakimeh Mohammadi
    Shahram Rezapour
    Advances in Difference Equations, 2020
  • [28] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 1281 - 1312
  • [29] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Guang-hua Gao
    Zhi-zhong Sun
    Journal of Scientific Computing, 2016, 66 : 1281 - 1312
  • [30] On high order fractional integro-differential equations including the Caputo-Fabrizio derivative
    Aydogan, Melike S.
    Baleanu, Dumitru
    Mousalou, Asef
    Rezapour, Shahram
    BOUNDARY VALUE PROBLEMS, 2018,