Some classes of power functions with low c-differential uniformity over finite fields

被引:1
|
作者
Zhengbang Zha
Lei Hu
机构
[1] Luoyang Normal University,School of Mathematical Sciences
[2] Institute of Information Engineering,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,School of Cyber Security
[4] University of Chinese Academy of Sciences,undefined
来源
关键词
Almost perfect nonlinear function; Differential uniformity; Perfect nonlinear function; 94A60; 11T71; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
Functions with low c-differential uniformity have optimal resistance to some types of differential cryptanalysis. In this paper, we investigate the c-differential uniformity of power functions over finite fields of odd characteristic. Based on some known almost perfect nonlinear functions, we present several classes of power functions f(x)=xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=x^d$$\end{document} with cΔf≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{c}\varDelta _f\le 3$$\end{document}. Especially, two new classes of perfect c-nonlinear power functions are proposed.
引用
收藏
页码:1193 / 1210
页数:17
相关论文
共 50 条
  • [41] Some Power Mappings with Low Differential Uniformity
    Tor Helleseth
    Daniel Sandberg
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 363 - 370
  • [42] Some power mappings with low differential uniformity
    Univ of Bergen, Bergen, Norway
    Appl Algebra Eng Commun Comput, 5 (363-370):
  • [43] Some power mappings with low differential uniformity
    Helleseth, T
    Sandberg, D
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (05) : 363 - 370
  • [44] On the differential uniformities of functions over finite fields
    LongJiang Qu
    Chao Li
    QingPing Dai
    ZhiYin Kong
    Science China Mathematics, 2013, 56 : 1477 - 1484
  • [45] On the differential uniformities of functions over finite fields
    Qu LongJiang
    Li Chao
    Dai QingPing
    Kong ZhiYin
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1477 - 1484
  • [46] On the differential uniformities of functions over finite fields
    QU LongJiang
    LI Chao
    DAI QingPing
    KONG ZhiYin
    ScienceChina(Mathematics), 2013, 56 (07) : 1477 - 1484
  • [48] On the Differential Spectrum and the APcN Property of a Class of Power Functions Over Finite Fields
    Tu, Ziran
    Li, Nian
    Wu, Yanan
    Zeng, Xiangyong
    Tang, Xiaohu
    Jiang, Yupeng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (01) : 582 - 597
  • [49] On Some Special Functions over Finite Fields
    Proskurin N.V.
    Journal of Mathematical Sciences, 2019, 240 (5) : 688 - 691
  • [50] Power trace functions over finite fields
    Fitzgerald, Robert W.
    Kottegoda, Yasanthi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (10)