Some classes of power functions with low c-differential uniformity over finite fields

被引:1
|
作者
Zhengbang Zha
Lei Hu
机构
[1] Luoyang Normal University,School of Mathematical Sciences
[2] Institute of Information Engineering,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,School of Cyber Security
[4] University of Chinese Academy of Sciences,undefined
来源
关键词
Almost perfect nonlinear function; Differential uniformity; Perfect nonlinear function; 94A60; 11T71; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
Functions with low c-differential uniformity have optimal resistance to some types of differential cryptanalysis. In this paper, we investigate the c-differential uniformity of power functions over finite fields of odd characteristic. Based on some known almost perfect nonlinear functions, we present several classes of power functions f(x)=xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=x^d$$\end{document} with cΔf≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{c}\varDelta _f\le 3$$\end{document}. Especially, two new classes of perfect c-nonlinear power functions are proposed.
引用
收藏
页码:1193 / 1210
页数:17
相关论文
共 50 条
  • [31] On the second-order zero differential spectra of some power functions over finite fields
    Man, Yuying
    Li, Nian
    Xiang, Zejun
    Zeng, Xiangyong
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 1 - 14
  • [32] Several classes of negabent functions over finite fields
    Gaofei WU
    Nian LI
    Yuqing ZHANG
    Xuefeng LIU
    Science China(Information Sciences), 2018, 61 (03) : 217 - 219
  • [33] Several classes of negabent functions over finite fields
    Wu, Gaofei
    Li, Nian
    Zhang, Yuqing
    Liu, Xuefeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (03)
  • [34] Several classes of bent functions over finite fields
    Xi Xie
    Nian Li
    Xiangyong Zeng
    Xiaohu Tang
    Yao Yao
    Designs, Codes and Cryptography, 2023, 91 : 309 - 332
  • [35] Several classes of bent functions over finite fields
    Xie, Xi
    Li, Nian
    Zeng, Xiangyong
    Tang, Xiaohu
    Yao, Yao
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (02) : 309 - 332
  • [36] Several classes of negabent functions over finite fields
    Gaofei Wu
    Nian Li
    Yuqing Zhang
    Xuefeng Liu
    Science China Information Sciences, 2018, 61
  • [37] Investigations of c-differential uniformity of permutations with Carlitz rank 3
    Jeong, Jaeseong
    Koo, Namhun
    Kwon, Soonhak
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 86
  • [38] Some Classes of Balanced Functions over Finite Fields with a Small Value of the Linear Characteristic
    Kamlovskii, O. V.
    Pankov, K. N.
    PROBLEMS OF INFORMATION TRANSMISSION, 2022, 58 (04) : 389 - 402
  • [39] Some Classes of Balanced Functions over Finite Fields with a Small Value of the Linear Characteristic
    O. V. Kamlovskii
    K. N. Pankov
    Problems of Information Transmission, 2022, 58 : 389 - 402
  • [40] C-differential bent functions and perfect nonlinearity
    Stanica, Pantelimon
    Gangopadhyay, Sugata
    Geary, Aaron
    Riera, Constanza
    Tkachenko, Anton
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 160 - 171